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Abstract
This study demonstrates application of Deep Deterministic Policy Gradient (DDPG)-based algorithm to provide compre-
hensive and flexible plans for reservoir operation planning of the multiple reservoir system in the Chao Phraya River Basin 
(CPYRB), Thailand aiming to mitigate flood and drought risks in the region. The multi-agent-based Deep Reinforcement 
Learning (DRL) model is accordingly constructed considering 7-D predicted inflow, reservoir water released from adjacent 
reservoir, downstream flow condition, and changes in reservoir water storage, as state variables. The desired goal is to increase 
water storage levels in all reservoirs by 10–15% to ensure higher potential in supplying water for crop cultivation over the dry 
seasons and preventing flood occurrences during wet season. Simulation results from 2009 to 2022 indicate that DRL–DDPG-
based algorithm can perform well in solving sequential decision problems for optimal operation of multiple reservoir system 
to achieve the desired water storage goal. It can offer realistic simulation results of seasonal and annual release schemes and 
reservoir release ratios among reservoirs in the system compared to actual operation and Fmincon and ANFIS optimizations. 
Importantly, DRL model demonstrates a significant advantage in view of increasing the long-term water storage levels in all 
reservoirs as targeted in the modelling process while maintaining the similar and consistent release schemes in the reservoir 
system. For the multipurpose multiple reservoir system operation, adjusting the dynamic desired goals within multi-agent-
based RL model is advisable to attain the specific desired outcomes and address various water scenarios.

Keywords Deep Reinforcement Learning (DRL) · Deep Deterministic Policy Gradient (DDPG) algorithm · Artificial 
Intelligence (AI) · Reservoir operation planning · Chao Phraya River Basin
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Introduction

Reservoir operation planning is a crucial task in water 
resources management involving the strategic determination 
of the optimal release and water storage from reservoir sys-
tem to meet water demand sectors at all possible time steps. 
It plays essential role in addressing reservoir management 
strategy and establishing water allocation plans specifically 
for flood and drought risk mitigation driven by considerable 
change in climate variability. Reservoir operation planning 
studies for both single and multiple reservoir systems are 
primarily based on analyzing past reservoir data including 
water inflow and water outflow, estimating current and future 
water demand data, and modelling the reservoir operation 
system using the modern computer-based technology. The 
guidelines for releasing reservoir water incorporated with 
the recommended release scheme and established water allo-
cation plan are expected to achieve as the intended goals of 
reservoir operation planning task. As the conventional deci-
sion-making process for reservoir operation scheme relies on 
the historical past data and traditionally uses predetermined 
rule curve as guideline, this requires extensive calculations 
particularly for large-scale multi-reservoir operation system 
(Oliveira and Loucks 1997). Additionally, the results are 
based on the subjective judgement by dam operators which 
may not capture its reality well. Moreover, accounting for 
non-linear relationships among relevant reservoir manage-
ment factors are hardly performed. Due to these limitations, 
the superior techniques like Artificial Intelligence (AI) and 
simulation-based optimization have been progressively 
developed to enhance capabilities of learning, reasoning, 
problem-solving, and decision making of the complex res-
ervoir operation system (Fayaed et al. 2013; Zhang et al. 
2018; Seifollahi-Aghmiuni and Bozorg-Haddad 2019; Lai 
et al. 2022).

In recent years, integration of Artificial Intelligence (AI) 
technologies has driven a paradigm shift for reservoir opera-
tion and its adaptability (Yadav et al. 2023). AI is a field 
of computer science focusing on the simulation of human 
cognitive abilities by computer intelligent machine that are 
programmed to think and act rationally like human to solve 
complicated problems (Verma 2018). It is proven that AI is 
a powerful toolset in optimizing current reservoir operations, 
delivering improved decision-making competence, and allo-
cating water resources more effectively (Yadav et al. 2023). 
In contrast to the physical-based models, AI-based mod-
els can acquire the various reservoir operation rules from 
hydrological big data and real-time operation data (Zhang 
et al. 2018). AI incorporates a broad range of techniques, 
algorithms, and approaches such as Machine Learning 
(ML), Reinforcement Learning (RL), Deep Reinforcement 
Learning (DRL), Fuzzy Logic (FL), Evolutionary Algorithm 

(EA), Optimization Algorithm (OA), and Hybrid Models 
(HM) (Yadav et al. 2023) which benefits for the specific 
applications in reservoir management. AI can potentially 
offer the improved decision-making capabilities in various 
means such as enhanced data processing for hydrological 
time-series prediction (Tounsi et al. 2022; Dastour and Has-
san 2023), augmented precision for flood prediction (Hu 
et al. 2019), and adaptability for water resource management 
(Belayneh et al. 2016).

Reinforcement Learning (RL) is a sub-field of Machine 
Learning (ML), which is a branch of modern Artificial 
Intelligent (AI). Its background of RL is primarily rooted 
in Dynamic Programming (DP) and Markov Decision Pro-
cesses (MDPs) in solving sequential decision problems 
(Wiering and van Otterlo 2012; Tabas 2020). Both DP and 
MDPs have the similar mathematical foundation used to 
describe the sequential decision-making problems (Wenwu 
et al. 2018). MDPs have been basically used to address 
most of the RL problems as it can model the environments 
with a finite set of environmental states, actions, transition 
probabilities and reward functions. RL has been progres-
sively developed to leverage the learning of dynamic system 
behaviors by reward-driven trial and error process (Kael-
bling et al. 1996). In recent years, RL has been driven by 
the AI research advancement in computer science which 
has yielded transformative and paradigm-shifting technolo-
gies. It has been found that RL algorithms have been widely 
applied in various fields including optimal operation of 
reservoir systems (Castelletti et al. 2001, 2010; Mahootchi 
et al. 2007; Madani and Hooshyar 2014; Dariane and Moradi 
2016; Wenwu et al. 2018; Hu et al. 2022a, b). The key ben-
efits of RL focusing on the long-term goal and uncertain 
environment have been proven through many applications 
for reservoir management (Mahootchi et al. 2007; Wang 
et al. 2020) and water resource system management (Hung 
and Yang 2021). The superior performance of RL-based res-
ervoir operating policy has been proven to significantly out-
perform than those policy designed by human (Wang et al. 
2020). In addition, RL has been applied for water resource 
scheduling of multi-reservoir system which exhibits better 
performance than traditional dynamic programming (Lee 
and Labadie 2007). Importantly, RL technique enables to 
adjust itself to learn the dynamic environment and create the 
proper response and reactions to these changes effectively 
(Mahootchi et al. 2007).

The core elements of RL model basically include: (1) 
environment, which is the genuine physical system that the 
agent works or simulated environment, (2) state, which is 
current situation of the environment, (3) agent, which is the 
system component that receive the states to take action, (4) 
reward, which is the response of environment due to the 
agent’s action, (5) policy, which is mapping procedure of the 
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agent’s state to the action, and (6) value, which is the future 
reward that the system agent would gain by taking the action 
in a specific state.

As the goal of RL is to maximize the cumulative reward 
over time, therefore, designing a proper reward function 
is the most essential task for state–agent–action interac-
tion (Bhattacharya et al. 2003). Establishing RL model can 
be started with defining the RL problem which includes 
agent’s goal, state space, action space, and reward function. 
Agent’s goal is what the agent needs to solve, so formulat-
ing explicit and measurable RL goal is definitely significant. 
The set of possible situations that the agent can encoun-
ter is defined as state space. The action space is the set of 
possible actions that agent can take. Determining the size 
of state and action spaces are based on the characteristic 
and relevant information of the system. The reward func-
tion defines the goal in the RL problems by mapping each 
perceived state of the environment to an assigned number 
called “reward”. It influences the behavior and learning of 
RL model for successful or unsuccessful outcomes. Imple-
mentation of RL problem can be manipulated by selecting 
RL learning algorithm which can be classified into two cat-
egories: (1) Value-based and (2) Policy-based. The value-
based RL learns a value function (Q-value) to guide a spe-
cific action for a next sequential state which the present and 
expected future rewards are maximized. However, it can be 
suitable and more efficient for some environments with small 
state and action spaces (Andriotis and Papakonstantinou 
2019). The policy-based RL directly learns to take action 
by mapping states to actions into policy. It is regarded as 
more adaptable for the environment system with continuous 
action spaces (Nguyen et al. 2020). In the learning process 
of RL, maximizing the collective rewards of the dynamic 
environment system for taking a particular action in a given 
state (Q-value) is intended to achieve by the value-based 
and policy-based RL. Additionally, setting up appropriate 
hyperparameters, such as learning rate, discount factor, and 
exploration rate, is made in the RL implementation process. 
Learning process of RL models can be implemented by 
direct interaction between the agent and the states in envi-
ronment. The latest updated value functions of the states can 
be used to update for each iteration. The agent selects the 
best admissible action that provides the best value function.

Q-Learning or fitted Q-iteration, a classical value-based 
RL algorithm, is widely used as learning method suitable 
for an environment with small state-action spaces. It uses 
tabular representation to collect the Q-value indicating 
state–action relation. Since this decision table approach 
of the classical RL cannot handle well with the large num-
ber of state–action combinations resulting in the curse of 
dimensionality problem, Deep Q-Networks (DQNs) which 
is the value-based Deep Reinforcement Learning (DRL) 
algorithm, was developed to take the discrete actions (Xu 

et al. 2021). To solve issues in continuous spaces and 
high dimensional states and actions, DRL was initially 
developed by combining the classical RL with deep neural 
networks representation (François-Lavet et al. 2018; Xu 
et al. 2021; Jiang et al. 2024). The enhanced learning capa-
bility of DRL in complex environments has been proven 
and its application to various fields has been extensively 
promoted (Mnih et al. 2015). DRL has been increasingly 
applied for reservoir system management (Rieker and Lab-
adie 2012; Wang et al. 2020), optimal operation of mul-
tipurpose reservoir systems (Peacock and Labadie 2018), 
optimal hydropower reservoir operation (Xu et al. 2020, 
2021; Wu et al. 2024), water division optimization (Jiang 
et al. 2024), and real-time control of stormwater systems 
(Mullapudi et al. 2020). In addition, to advance the perfor-
mance of RL dealing with high-dimensional state spaces 
and continuous actions, Deep Deterministic Policy Gradi-
ent (DDPG) which is a sort of DRL algorithm, is newly 
developed for decision making process in the complicated 
environment. It combines elements of the value-based and 
policy-based RL in accordance with actor-critic networks 
(Alturkistani and El-Affendi 2022). This allows DDPG to 
learn both the value function and policy and take the opti-
mal actions in a large and complex environment. DDPG 
has been proven in term of capability to successfully solve 
the problems with large model parameters and non-linear 
dynamics (Sumiea et al. 2023). Additionally, due to stabil-
ity and convergence properties of DDPG algorithm, it has 
been applied in a broad range of challenging tasks includ-
ing robotics, simulation-based issues, energy management, 
and reservoir operation decision and control (Tabas and 
Samadi 2024).

In this study, DRL modelling-based design approach 
focusing for multiple reservoir operation planning was 
demonstrated and applied for the Chao Phraya River Basin 
(CPYRB). Due to unbalancing between the water availabil-
ity and water demand in this region, the reservoir opera-
tion management and planning plays crucial role in driving 
the water resources management policy for implementation 
against flood and drought problems. CPYRB is the larg-
est basin in Central Thailand occupying drainage area of 
approximately 160,000  km2 or nearly 30% of the country 
area. CPYRB has shifted from the uncontrolled basin to the 
highly developed basin with multipurpose storage dams, 
extensive canal infrastructures serving more than 10 mil-
lion rai (16,000  km2) of irrigated land (Kyaw et al. 2024), 
and expansion of industrial and urban area since 2000s 
(Molle 2002). There are four main storage dams in CPYRB: 
Bhumibol (BB), Sirikit (SK), Khwae Noi Bunrung (KNB), 
and Pasak Cholasite dams, which built across Ping, Nan, 
Khwae Noi, and Pasak rivers, respectively as illustrated 
the basin map in Fig. 1a and river schematic diagram in 
Fig. 1b. Their reservoir capacities are 13,462, 9,510, 939, 
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and 960 million cubic meters (MCM). These dams supply 
reservoir water for both local demand and joint demand in 
the wide floodplain area along the Chao Phraya rivers. The 
Chao Phraya (CPY) diversion dam is acted to re-regulate the 
downstream flow released from BB, SK, and KNB before 
distributing into canal irrigation system in the Greater Chao 
Phraya Irrigation Scheme (GCPYIS) and downstream river 
reach where PS dam joins. More than 70% of the water allo-
cated from main dams has been supplied for agricultural 
purpose in GCPYIS. The remaining has been utilized for 
non-agricultural water needs including municipal and indus-
trial uses, and ecological conservation along the tributar-
ies and main rivers as well as hydropower production. The 
current reservoir operation from 2000 to 2022 in CPYRB 
reveals that the average release portions of all dams are 
0.3352:0.3391:0.1015:0.1643 for BB, SK, KNB, and PS 
dams, respectively. However, these water allocation ratios 
have been considerably altered corresponding to the water 
availability and water demand situations within the basin.

Managing risks of flooding and drought events driven by 
climate variability and economic development acceleration 

in CPYRB have become critical priority in the context of 
water resource management. In 2011, the worst flooding 
triggered by the tropical monsoon storms was occurred 
and sparsely spread in the northern, northeastern, and cen-
tral Thailand creating huge damages and economic losses 
in CPYRB and neighboring basins. Since 2011, CPYRB 
has frequently experienced a sudden increase in monsoon 
flooding particularly at the end of wet season (Septem-
ber–October) which may continue into November in flood 
prone area along the lower reach of Chao Phraya and Pasak 
rivers. Moreover, CPYRB has suffered the consecutive and 
prolonged droughts during dry season (November–April) 
arising more frequently from 2016 to 2018. This highlights 
the necessity of establishing suitable water allocation plan 
along with generating proper reservoir release scheme to 
effectively handle flood and drought risks for both short-
term and long-term operations in this region. Consequently, 
this study aims to investigate the capability of Deep Rein-
forcement Learning (DRL) for multiple reservoir operation 
planning in CPYRB. A multi-agent system for multiple 

Fig. 1  The Chao Phraya River Basin in the Central Thailand
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reservoir operation is implemented using the DRL–DDPG 
algorithm to determine the water releases from all reservoirs 
corresponding to the targeted water storage levels. Making 
decision on the water release by multi-agent-based DRL 
relies on keeping higher storage levels of all reservoirs up 
to 10–15% above the long-term average as established to 
ensure effective reservoir management planning and mitigate 
flood and drought risks in this region.

Methods

Development of multiple reservoir operation 
planning model by deep reinforcement learning

To develop the daily multiple reservoir operation model by 
the multi-agent-based DRL for CPYRB, the operation of 
each reservoir is represented as agent including: (1) Agent-
BB, (2) Agent-SK, (3) Agent-KNB, and (4) Agent-PS. The 
determination of daily reservoir release of each dam is 
defined as the agent’s action that receives the state variables 
from the environment system. The state variables of Agent-
BB identified for this study consist of 7-day predicted inflow 
(It+7) (Kraisangka et al. 2022), observed reservoir release of 
SK dam at time t (Ragent-SKt), key downstream flow condi-
tion at C.2 station at time t (QC.2t), change in water storage 
at time t (ΔSt) and derivative of the change in water storage 
with respect to time t (dΔSt/dt). As the water storage levels 
of all dams in CPYRB are aimed to increase by 10–15% 
compared to the long-term average to moderate water scar-
city during dry season, therefore, the targeted water storage 
levels of four main agents are accordingly generated. To 
achieve this, two key state variables; ΔSt and dΔSt/dt are also 
incorporated into the reservoir operation planning model by 
DRL. The change in storage (ΔSt) is subtraction term of the 
targeted water storage volume (Stargett) and the water storage 
volume generated by DRL model (St).

Similarly, the state variables of Agent-SK are 7-day pre-
dicted inflow (It+7), observed reservoir release of BB dam at 
time t (Ragent-BBt), key downstream flow condition at C.2 sta-
tion at time t (QC.2t), change in water storage at time t (ΔSt) 
and derivative of the change in water storage with respect 
to time t (dΔSt/dt). As the KNB dam which was built across 
the Khwae Noi river, a major tributary of the Nan river, 
supplies water to the central region downstream of SK dam, 
therefore, defining the state variable of KNB-agent also 
incorporates the observed reservoir water released from SK 
dam (Ragent-SKt). In addition, 7-day predicted inflow (It+7), 
downstream flow condition at C.2 station at time t (QC.2t), 

change in water storage at time t (ΔSt) and derivative of 
the change in water storage with respect to time t (dΔSt/
dt) are determined as key state variables for Agent-KNB to 
potentially satisfy the joint water demand for CPYRB. The 
key gauged flow at C.13 station at time t (QC.13t) located 
downstream of the Chao Phraya diversion dam is considered 
as the major state variable of Agent-PS together with 7-day 
predicted inflow (It+7), change in water storage at time t (ΔSt) 
and derivative of the change in water storage with respect to 
time t (dΔSt/dt) as illustrated in Fig. 2a and b.

Identifying the state variables of all agents refers to the 
physically-connected reservoir system and joint operation 
among all reservoirs in CPYRB, together with upstream 
and downstream influencing factors on reservoir operation. 
The anticipated inflow data at 7-day lead time and current 
and desired reservoir storage status of each single reservoir 
is considered as one of the important factors to make res-
ervoir operation response corresponding to the changing 
water conditions. Furthermore, the downstream flow condi-
tions at key selected stations (C.2 and C.13) and the release 
schemes of adjacent reservoirs impact the release decision 
and response for a reservoir to aid multiple reservoir opera-
tion and jointly serve the downstream demand in the lower 
basin. Additionally, considering initial downstream flow 
conditions at these key stations can prevent simultaneous 
dam releases from different tributaries of CPY river that 
may coincide and potentially lead to severe flooding in the 
downstream economical areas. In other words, downstream 
flow conditions are determined as state variable in the DRL 
model to identify the potential flood risks and constraints.

In the decision-making process, the agent (representing 
reservoir operation system of each dam) utilizes DRL to 
take an action (representing water release from each res-
ervoir) through the process of trial and error driven by the 
assigned rewards. Each action of determining the amount 
of released water is referred to an “episode” which con-
sists of numerous simulation iterations. Deep Deterministic 
Policy Gradient (DDPG) which is a reinforcement learning 
algorithm, is used for multiple reservoir operation model-
ling in CPYRB. DDPG employs an actor-critic approach 
combining value-based (Q-value) and policy-based (policy 
gradient) techniques that can implement large state spaces 
in the environment to take indiscrete action. In DDPG algo-
rithm, the agent takes the action corresponding to the maxi-
mum Q-value from the current state. The Q-value signifies 
the expected future reward for taking a certain action in a 
given state. In other words, by doing this, the agent aims to 
maximize its expected future reward. To learn from the past 
experience and improve future decisions, each action made 
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Fig. 2  Conceptual idea for the development of multiple reservoir operation model by DRL for CPYRB
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by the agent is recorded as behavior in an Artificial Neu-
ral Network (ANN) structure. The action with the highest 
Q-value is selected and the policy gradient in the ANNs is 
accordingly adjusted as shown in Fig. 2c.

The modelling process by DRL–DDPG begins with the 
actor, a component of agent, receiving a state value and 
sending an action to the environment. Subsequently, the 
environment sends a reward and a state value to the critic 
neural network to update the Q-value. The critic neural net-
work then sends the Q-value back to the actor neural net-
work for gradient adjustment. In the other words, the critic 
neural network acts as a guideline, advising the actor neural 
network on which action will yield the highest Q-value.

In this study, the reward function is termed as a function 
of water storage maintaining to reach the established target 
levels and satisfaction of releasing reservoir water to meet 
the water demand for each dam. Consequently, calculating 
the rewards is subject to two conditions as expressed in the 
following equations.

(1)
|

|

|

Sit− Sitargett
|

|

|

> 0.2 ∗ Sitargett → rit = −10 ∗ |

|

|

Sit− Sitargett
|

|

|

;

∀i = 1,… ., N, & t = 1,… , T

where Ri
t is the reservoir release (outflow) of reservoir i at 

time step t (or DRL release), Sit and Sitargett are the reser-
voir water storage and targeted water storage of reservoir 
i at time step t, respectively, and Di

t the reservoir water 
demand of reservoir i at time step t, including both local 
and joint water demands. In this study, the local and joint 
water demands in the basin are calculated considering both 
agricultural and non-agriculture requirements and encom-
passed into the DRL-based reservoir operation model. The 
calculation of local water demand for each of four main 
storage dams are based on the agricultural water need for 
small-scale irrigation scheme, and non-agricultural water 
demand including municipal, industrial, and ecological 
needs to represent its local demand supplied by the adja-
cent dam and incorporate environmental challenges in each 
CPY tributaries. For joint water demand, agricultural water 
requirement over the planting seasons in GCPYIS which 
is the largest irrigation scheme in the central region, is 

(2)
|

|

|

Sit− Sitargett
|

|

|

≤ 0.2 ∗ Sitargett → rit = 100∕||
|

Ri
t−Di

t
|

|

|

;

∀i = 1,… ., N, & t = 1,… , T

Table 1  Targeted water storages of all dams specified for multiple reservoir operating planning

1/ The difference between the targeted and average water storage levels of each dam in April
2/ The difference between the targeted and average water storage levels of each dam in October

Dam
Month

BB SK KNB PS

Avg. storage Targeted stor-
age

Avg. storage Targeted stor-
age

Avg. storage Targeted stor-
age

Avg. storage Targeted storage

Unit – MCM MCM MCM MCM MCM MCM MCM MCM

Jan DS 9,043 10,493 6,820 7,819 548 683 661 757
Feb 8,534 9,983 6,350 7,349 451 586 539 635
Mar 7,865 9,314 5,786 6,785 362 498 419 514
Apr 7,177 8,627 5,206 6,205 287 422 308 404
May WS 6,681 8,130 4,753 5,752 239 375 235 331
Jun 6,517 7,966 4,591 5,590 223 358 204 300
Jul 6,412 7,862 4,714 5,713 226 362 182 278
Aug 6,677 8,126 5,491 6,490 326 462 193 288
Sep 7,618 9,067 6,567 7,566 525 660 429 525
Oct 8,828 10,277 7,183 8,182 706 842 808 904
Nov DS 9,361 10,810 7,245 8,244 738 873 843 939
Dec 9,342 10,791 7,052 8,051 684 820 776 871
Initial Water Stor-

age Increased in 
 WS1/

 + 1,449
(+ 15%)

 + 999
(+ 15%)

+ 136
(+ 15%)

 + 96
(+ 10%)

Initial Water Stor-
age Increased in 
 DS2/

 + 1,450
(+ 15%)

 + 999
(+ 15%)

 + 135
(+ 15%)

 + 96
(+ 10%)

MPL 3,800 2,850 43 3
NPL 13,462 9,510 939 960
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accordingly estimated. Estimating municipal and industrial 
water demand in the lower CPYRB, and ecological needs 
along downstream reach of CPYR to prevent seawater intru-
sion is also conducted to account for all water demand sec-
tors. Since supplying water to joint demand in CPYRB is 
proportionally shared by four dams in the basin, therefore, 
the average release portions of 0.3352:0.3391:0.1015:0.1643 
for BB:SK:KNB:PS dams, are accordingly used to deter-
mine the individual water demand.

To maintain the targeted storage levels of all agents in the 
reservoir system, the negative reward, −10 ∗

|
|
|
Si
t
− Si

targett

|
|
|
 is 

given for each step of agent’s action when the difference in 
DRL water storages and targeted storage level of reservoir i is 
greater than 20% of targeted storage levels or 
|
|
|
Si
t
− Si

targett

|
|
|
> 0.2 ∗ Si

targett
 . In contrast, the positive reward, 

100∕||R
i
t
− Di

t
|
| is given for each step of agent’s action when the 

DRL water storage and targeted level of reservoir i is in a range 
of less than 20% of targeted storage levels or 
|
|
|
Si
t
− Si

targett

|
|
|
≤ 0.2 ∗ Si

targett
.

It is noticeable that when the storage difference term or 
|
|
|
Si
t
− Si

targett

|
|
|
 is large (> 0.2*Sitargett), the considerable negative 

reward (< < – 10) is given to the DRL model by multiplying 
the storage difference term with –10. In other words, a large 
discrepancy of DRL and targeted water storage levels yields a 
considerable negative penalty reward for the DRL model. 
When the storage difference term or ||

|
Si
t
− Si

targett

|
|
|
 is small 

(≤ 0.2*Sitargett) indicating that the DRL model can achieve well 
with the targeted storage levels, the significant positive reward 
is given to the DRL model as an inverse function of water defi-
cit term, |

|R
i
t
− Di

t
|
|
 by dividing 100 with water deficit term. A 

maximum positive reward of + 100 is given to the model when 
there is no water deficit.

DRL–DDPG Algorithm:

The computational process of DRL–DDPG formulated in 
this study is presented in the following;
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The multiple reservoir operation system in CPYRB is 
primarily governed by the principle of mass balance as 
expressed in the following equation;

where Sit and Sit+1 are the reservoir water storages of reser-
voir i at time step t and t + 1, respectively, Iit is the reservoir 
inflow of reservoir i at time step t, Ri

t is the release of res-
ervoir i at time step t achieved by DRL–DDPG algorithm, 
Ei

t is the evaporation losses of reservoir i at time step t, 
and Spillit is the spilled water from the reservoir i at time 
step t. The decision on the DRL release of each reservoir is 
constrained by the minimum release, Ri

min and maximum 
release, Ri

max to ensure the minimum environmental flow 
requirement and maximum safe channel capacity of each 
dam. In addition, the available water storages after releasing 
reservoir water by DRL model should lie between minimum 
water storage, Simin and maximum water storage, Simax of 
each reservoir.

Setting up the targeted reservoir water storage 
for reservoir operation planning

The reservoir operation planning is served as the funda-
mental undertaking for the strategic reservoir management 
to achieve the specific purpose. This enables the reser-
voir planners to better understand and establish strategic 
operation policy for sustainable water security. The main 
objective of this study is to demonstrate the deep rein-
forcement learning technique to recommend the release 
scheme for multiple reservoir operation planning task. 
Consequently, the increased levels of targeted storages of 
four main dams in CPYRB by 10–15% compared to the 
long-term average, is generated as expressed in Table 1 
and Fig. 3. This leads to the enhanced potential to inten-
sively supply water not only for irrigation over the crop 
cultivation periods but also the downstream water needs. 
However, to protect dams from downstream flooding as 
a result of reservoir operation, the percentage increase 
of water storage levels in the reservoir system is deter-
mined lying between the Normal Pool Level (NPL) and 
Minimum Pool Level (MPL) of each reservoir. Accord-
ing to the increased water storages in reservoirs during 
dry season (Nov.–Apr.), the extra amount of water stor-
age of + 1,450, + 999, + 135, and + 96 MCM for BB, SK, 
KNB, and PS dams can be increased in October before 
the subsequent crop planting season begins. Similarly, 
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during wet season (May.–Oct.), the additional water stor-
ages in May of + 1,499, + 999, + 136, and + 96 MCM for 
these dams can be enhanced to meet agricultural and non-
agricultural water demands throughout the wet season. Not 
only the increased water storage in all dams is utilized 
for the downstream water conservation purpose over the 
crop cultivation periods, but also it is beneficial for hydro-
power production. Based on this, optimal daily reservoir 
release scheme from 1/11/2009 to 31/12/2022 is accord-
ingly accomplished using DRL approach.

Evaluating the effectiveness of DRL model 
in reservoir management for CPYRB

The daily long-term simulation from 1/11/2009 to 
31/12/2022 was conducted using the DRL–DDPG-based 
operation model for CPYRB. The simulated reservoir water 
storages, reservoir releases, and release ratios of four main 
dams; BB, SK, KNB, and PS, were accordingly evaluated to 
explore the short-term and long-term operational capabilities 
of the DRL model in comparison to actual operation. In the 
last step, the comparative analysis of the DRL model against 
two optimization approaches previously studied for reser-
voir management in CPYRB focusing on BB and SK dams 
was benchmarked; (1) non-linear optimization programming 
using Fmincon function (Kyaw et al. 2022) and (2) Adaptive 
Neuro Fuzzy Inference System (ANFIS) (Kyaw et al. 2024).

Result and discussion

The simulated reservoir operation accomplished 
by DRL model for CPYRB

The followings are the daily simulated reservoir operations 
from 1/11/2009 to 31/12/2022 for BB, SK, KNB, and PS 
dams under the alternative reservoir operation schemes 
generated by the DRL model. The water storage levels sim-
ulated by DRL model are compared to both the targeted 
and observed water storage levels as shown in Fig. 4. It is 
revealed that DRL model recommends to release the optimal 
volume of water from all reservoirs to reach the increased 
water storage levels as determined as a desired goal. This 
substantially results in lowering the considerable fluctua-
tions of water storage levels in all reservoirs. The reservoir 
releases at the current time step of all dams performed by 
DRL–DDPG-based algorithm is accomplished by the refine-
ment process to get the maximum reward values which 
learns from the current and next future time steps to find the 
optimal action using actor-critic neural networks. Therefore, 
the optimal daily releases to achieve the targeted water stor-
age levels, which will be used to establish the seasonal and 
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annual water allocation plans for CPYRB, are accordingly 
generated.

Effectiveness of DRL model in reservoir 
management for CPYRB

As DRL model performs well to conform the targeted 
water storage levels of all dams constructed as annual plan 
for reservoir operation, the effectiveness of DRL model in 
reservoir management for CPYRB is accordingly assessed. 
The total amount of annual water releases performed 
by DRL model from 2010 to 2022 are compared to the 
observed annual releases as shown the results in Fig. 5. 

In addition, the water release ratio among reservoirs in 
the CPYRB system are also calculated and presented. It is 
found that DRL generates the different annual release pat-
terns according to the various water circumstances com-
pared to the observed releases. In wet year of 2011, DRL 
model recommends releasing larger volume of released 
water from all dams to deplete reservoir storage levels and 
keep as the targeted water storages. As a result, critical 
flood risks for the subsequent time periods in 2012 can be 
certainly moderated. In critical dry years of 2014, 2015, 
2019, and 2020, the total annual releases implemented by 
DRL model are likely to be the lowest compared to those 
in wet and normal years. However, adjusting the dynamic 

Fig. 3  Targeted water storage 
levels specified for multiple 
reservoir operation planning 
model by DRL
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targeted water storage levels to suit to water supply and 
water demand conditions in the reservoir system is highly 
recommended to reduce flood and drought risks.

The simulated results over the period 2010–2022 also 
indicate that average values of annual release achieved 
by DRL model are slightly higher than those observed 
releases by + 2.93% and + 0.16% for BB and KNB dams 
while slightly lower by – 2.91% and – 9.51% for SK and 
PS dams, respectively. While DRL model determines reser-
voir releases annually based on targeted water storage levels 
and state variables in the environment system, the average 
total release across all dams in CPYRB closely aligns with 
observed release. Consequently, small percentage difference 
of – 1.71% is found as indicated in Table 2.

Based on the seasonal analysis of reservoir release, it is 
found that during crop cultivation periods in dry season, 
DRL model recommends increasing additional water release 
of PS dam by + 46.01% while lowering reservoir water from 
BB, SK, and KNB by – 31.75%, – 16.91%, and – 17.92%, 

respectively. In contrast, DRL model achieves targeted water 
storage levels by suggesting to increase the water releases 
during crop cultivation periods in wet season from BB, 
SK, and KNB dams by + 66.28%, + 16.86%, and + 14.84%, 
respectively and lowering the release water from PS dams 
by – 34.27%.

Corresponding to the simulated results of reservoir opera-
tion aiming to keep the increased levels of water storages of 
all reservoirs up to 10–15% of the average, the release ratios 
of all reservoirs are considerably assessed and compared to 
the actual operation in the multiple reservoir system. Table 3 
and Fig. 6 presents the reservoir release ratios in dry years, 
normal years, and wet years for short-term multiple opera-
tion, as well as the reservoir release ratios for long-term mul-
tiple operation which are obtained from the multiple reser-
voir operation planning model accomplished by DRL model. 
It is illustrated that DRL model suggests adjusting reservoir 
water allocation schemes among reservoirs in the system 
for both short-term and long-term operations to increase 

Fig. 4  Comparison of reservoir 
water storages obtained from 
DRL model and observed water 
storages
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the water availability in all reservoirs. During dry years, 
DRL model proposes increasing higher release ratios for 
SK and KNB dams and slightly lower ratios for BB and PS 
dams to moderate drought risk. DRL model suggests raising 
the reservoir release from BB, SK, and KNB dams during 
normal years. Additionally, higher release from BB dam is 
recommended to mitigate flood risk during wet years. These 
results signify the benefit of DRL modeling for a typically 
successive reservoir operation planning task in establishing 
the annual water allocation plan based on specific storage 
level targets identified as an example in this study. However, 
in the operational practice, these targeted levels of water 
storages in the multiple reservoir system of CPYRB can be 

dynamically adjusted by policy makers to suit with the water 
circumstances and perspectives on achieving a sustainable 
reservoir management of reservoir system.

Comparative analysis of DRL model with other 
optimization approaches in reservoir management 
for CPYRB

To explore capability of proposed DRL–DDPG based opera-
tion model for multiple reservoir operation planning, the 
comparative analysis comparing the simulated results of the 
DRL model for BB and SK dams with other state-of-the-
art reservoir operation optimization techniques previously 

Fig. 5  Comparison of reservoir releases achieved by DRL model and observed releases
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studied in CPYRB, was also conducted. Two main tech-
niques are non-linear optimization programming (Kyaw 
et al. 2022) and Adaptive Neuro Fuzzy Inference System 
(ANFIS) applied for reservoir optimization in CPYRB 
(Kyaw et al. 2024). The optimization-based solution tech-
nique using non-linear programming solver (Fmincon func-
tion) was developed for BB and SK reservoir operation sys-
tem aiming to address water scarcity in the region while 
flooding conditions due to the dam releases was constrained. 
Consequently, setting up the objective function for multi-
reservoir operation model was referred to the minimization 
of the water scarcity indicating inability to satisfy the joint 
water demand in CPYRB. The hybrid neuro-fuzzy-based 
reservoir operation model for BB and SK dams was also 

developed by aiming to aid the reservoir operation system 
in alleviating water scarcity and moderating floods by opti-
mizing operational rules using ANFIS technique. To for-
mulate the ANFIS model structures, three main variables, 
namely reservoir inflow, reservoir water storage, and tar-
geted water demand, were determined as input variables and 
current dam release was specified as the output variable. The 
model was trained and tested using 80% and 20% of dataset, 
respectively, by doing this, the optimal reservoir operational 
releases of BB and SK dams were solved and presented. 
As the local and joint water demand data, reservoir data, 
and reservoir system constraints used in these two previ-
ous studies are consistent with this study, consequently, a 
comparative analysis in reservoir management for CPYRB 

Table 2  Summary of average reservoir releases of all dams simulated from 2010 to 2022

1/  Evaluated using the data from 1/1/2010 to 31/12/2022
2/ Evaluated using the data from 1/11/2009 to 31/12/2022
3/ ΔDIFF–Percentage difference, OBS–Observed data

Dam Annual Dry season (Nov.–Apr.) Wet season (May.–Oct.)

DRL  release1/ OBS  release1/ ΔDIFF3/ DRL  release2/ OBS  release2/ ΔDIFF3/ DRL  release2/ OBS  release2/ ΔDIFF3/

Unit MCM MCM % MCM MCM % MCM MCM %

BB 4,318 4,195  + 2.93% 1,850 2,711 – 31.75% 2,657 1,598  + 66.28%
SK 4,744 4,886 – 2.91% 2,374 2,857 – 16.91% 2,553 2,184  + 16.86%
KNB 1,292 1,290  + 0.16% 475 578 – 17.92% 880 766  + 14.84%
PS 1,864 2,060 – 9.51% 928 635  + 46.01% 1,009 1,534 – 34.27%
Total 12,218 12,431 – 1.71% 5,627 6,782 – 17.03% 7,098 6,083  + 16.69%

Table 3  Reservoir release ratio 
accomplished by DRL model 
for short-term and long-term 
operations

1/ DY–Dry Year, NY–Normal Year, WY–Wet Year, LT–Long-term Operation from 2010 to 2022

Operation Avg. release ratio DRL OBS

Short-term:  DY1/ BB:SK:KNB:PS 0.3273:0.5165:0.0903:0.0659 0.3554:0.4908:0.0820: 0.0718
Short-term:  NY1/ BB:SK:KNB:PS 0.3268:0.3754:0.1167:0.1812 0.3106:0.3602:0.1157:0.2135
Short-term:  WY1/ BB:SK:KNB:PS 0.3894:0.3778:0.0927:0.1402 0.3116:0.3858:0.1191:0.1835
Long-term:  LT1/ BB:SK:KNB:PS 0.3280:0.4163:0.1030:0.1528 0.3352:0.3991:0.1015:0.1643

Fig. 6  Reservoir release ratio accomplished by DRL model. (Note: DY–dry year, NY–normal year, WY–wet year, LT–long-term operation, 
OBS–observed data)
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could be conducted to compare the relative performances 
of these models. The comparison of simulated annual res-
ervoir releases for BB and SK dams from 2010 to 2022, 
accomplished by the DRL, Fmincon, and ANFIS, models 
is shown in Fig. 7. These long-term simulations incorporate 
the impact of climate variability, including the severe flood 
of 2011 and consecutive prolonged droughts from 2016 to 
2018.

Compared to actual operation and Fmincon and 
ANFIS optimization models, it is illustrated that DRL 
model generated the similar annual release patterns of 
two main storge dams with potentially different release 
volumes across various water conditions. The statistical 
correlations between the DRL model and actual opera-
tion, Fmincon, and ANFIS optimizations were 0.6744, 
0.7525, and 0.6690, respectively. During the consecutive 
critical drought years apparently occurred from 2016 
to 2018, the DRL model recommended to increase the 
release volume supplied from BB and SK dams signifi-
cantly to moderate water scarcity in the basin. During 
the severe flood year in 2011, the DRL model attempted 
to deplete the reservoir water storage to align with the 
targeted storage lines resulting in substantially larger 
releases from these two dams compared to actual opera-
tion and two optimization models. Consequently, the 
smaller releases accomplished by DRL model was found 
in subsequent year, 2012 due to lower flood risks. How-
ever, the average long-term releases of BB and SK dams 
performed by DRL models are slightly different compared 
to actual operation, Fmincon, and ANFIS optimization 
techniques. It is estimated that the percentage difference 
in reservoir releases of DRL, Fmincon, and ANFIS are 
– 4.19%, + 2.58%, + 2.15%, respectively in comparison 
with the actual operation. Importantly, the DRL model 
demonstrated a significant advantage over these two 
optimization models in view of increasing the long-term 
water storages lying approximately + 15% for BB and SK 
dams as targeted in the DRL modelling process. Whereas, 

the Fmincon and ANFIS models could only increase water 
storages by + 12.48% (BB) and + 5.23% (SK) (Kyaw et al. 
2022) and + 6.94% (BB) and + 1.62% (SK) (Kyaw et al. 
2024), respectively. While the developed DRL model 
inherently incorporated release and storage constraints 
to regulate downstream flooding and maintain reservoir 
levels within safe limits, the continuous larger releases 
from two main storage dams particularly in 2011 led to 
the higher operational flood risk and damage compared 
to the other two optimization techniques. To address this 
limitation, it is advisable to include flood control infor-
mation into the reward penalty function to improve the 
DRL model’s capability.

DRL–DDPG hyperparameter tuning

For DRL–DDPG hyperparameter tuning, this study 
adopted a trial-and-error process and employed the opti-
mal values obtained from recent research work (Tabas and 
Samadi 2024) as guideline to fine-tune optimal hyperpa-
rameter values as summarized in Table 4. It is emphasized 
that the reward discount factor (γ) of 0.90 is a substantial 
hyperparameter of DRL model that significantly controls 
the future rewards implication in the learning process 
of the model’s agent. Additionally, a fine-tune value of 
changing rate for target network weight (τ) of 1 ×  10–3 
can help improve the stability of the training process to 
characterize the dynamic behaviors of reservoir operation 
system and targeted storage levels. The exploration noise 
(N) is specified to 0.30 encouraging agents to explore a 
broad range of release actions. The critic and actor learn-
ing rates (α) are set to 1 ×  10–2 and 1 ×  10–3, respectively 
that influences the speed of learning process of model’s 
agent. In this study, the initial weighted values (θ) are 
randomly initialized and updated using gradient value (∇) 
to guide the learning process of direction improvement. 
It is found that a key advantage of DRL–DDPG based 

Fig. 7  Comparison of total 
reservoir releases of BB and SK 
dams accomplished by DRL–
Fmincon–ANFIS models
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operation model is its capability to significantly shorten 
computational time allowing to generate reservoir release 
schemes with a limited number of episode simulations. 
However, the speed and competence of the agent’s con-
vergence to that desired goal is significantly subject to 
assigned reward function.

Conclusions

The challenge in optimal operation of multiple reservoir sys-
tem involves making complicated decisions on time-varying 
state variables like available water storage, future reservoir 
inflows, water demand requirements, existing release scheme 
of adjacent dam in the system, and downstream flow con-
ditions. Consequently, establishing robust water allocation 
plan to ensure the efficient and sustainable system operation 
and mitigate flood and drought risks is definitely important 
for reservoir operation planning task. This study demon-
strates application of DRL–DDPG-based algorithm to pro-
vide comprehensive and flexible plans for reservoir opera-
tion planning of the multiple reservoir system in CPYRB. 
The multi-agent-based DRL model is constructed consider-
ing 7-D predicted inflow, reservoir water released from adja-
cent reservoirs, downstream flow conditions, and changes 
in water storage, as state variables. The goal of multiple 
reservoir system operation is set by increasing 10–15% of 
water storage levels to all reservoirs in CPYRB and ensuring 
higher potential in supplying water for crop cultivation over 
the dry seasons. At the same time, these increased storage 
lines are determined not exceeding the normal pool levels 
to avoid flooding occurrences. In other words, the reservoir 
operators are assumed to set operational targeted goal to 
allow DRL–DDPG-based algorithm help recommend the 
proper seasonal and annual release schemes. Simulation 
results indicate that DRL–DDPG-based algorithm can per-
form well in solving sequential decision problems for opti-
mal operation of multiple reservoir system to achieve the 
desired goal in CPYRB. It can provide reasonable and realis-
tic simulated results in terms of seasonal and annual release 
schemes and reservoir release ratios among reservoirs in the 
system in comparison to observed operation and Fmincon 
and ANFIS optimization techniques. Importantly, it can 

shorten computational time significantly to gain reservoir 
release schemes with small number of episode simulation. 
However, the speed and competence of the agent’s conver-
gence to that desired goal is significantly subject to reward 
function design. For model utilization, reservoir planners 
can simply adjust targeted storage levels for each dam in 
the DRL model to meet desired goals in the multiple reser-
voir system by considering current and future water supply 
and demand conditions. The trade-off between flood control 
and drought mitigation measures to set up the optimal lev-
els of targeted reservoir storages is definitely recommended 
to ensure the successful DRL-based reservoir operation. 
By considering this, the model enables the establishment 
of comprehensive and flexible water allocation plans and 
release guideline trajectory for sustainable reservoir opera-
tion planning in CPYRB.

Recommendation

The design of reward function is one of the critical aspects 
of DRL applications for optimal operation of reservoir sys-
tems. To fully capture the complex dynamics and trade-
offs in reservoir operation, it is recommended to explicitly 
incorporate water deficit and flood control measures, and 
other relevant factors such as impact of reservoir releases 
on downstream ecosystems, cost of water supply, long-term 
sustainability of water resources, and intended hydropower 
production, etc. into the reward function for the achievement 
of specific objectives of reservoir optimization. In addition, 
to balance exploration and exploitation of the DRL model’s 
agent exploring the new actions and reducing the undesired 
actions for determining reservoir releases, the magnitude of 
the penalty reward should be specified carefully. Moreover, 
this study utilizes long-term historical data from 2010 to 
2022 for DRL-based simulation to incorporate the impact 
of climate variability like the severe flood of 2011 and pro-
longed droughts from 2016 to 2018. However, conducting 
scenario-based simulations to reflect the future climate 
variability and water demand conditions are needed for the 
further investigation of model’s ability to adapt to changing 
circumstances. Furthermore, adjusting the dynamic targeted 

Table 4  Optimal values of DRL–DDPG hyperparameters identified based on a trial-and-error process

Agent Reward dis-
count factor, γ

Changing rate for target 
network weight, τ

Exploration 
noise, N

Buffer size Critic learning rate Actor learning rate Batch size

BB 0.90 1 ×  10–3 0.30 1 ×  106 1 ×  10–2 1 ×  10–3 64
SK 0.90 1 ×  10–3 0.30 1 ×  106 1 ×  10–2 1 ×  10–3 64
KNB 0.90 1 ×  10–3 0.30 1 ×  106 1 ×  10–2 1 ×  10–3 64
PS 0.90 1 ×  10–3 0.30 1 ×  106 1 ×  10–2 1 ×  10–3 64
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levels of water storages in the multiple reservoir system of 
CPYRB is strongly recommended to suit with the water cir-
cumstances and perspectives on achieving a sustainable res-
ervoir management and flood and drought risks mitigation.
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