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Surface runoff is a key component of the hydrological cycle. Land use/land cover is  
a main factor affecting runoff processes. This research quantified the future changes in the 
runoff yield based on land use/land cover change (LULCC) using as a case study the Lam 
Pachi (LPC) Basin, a tropical watershed located in western Thailand. Future land change 
scenarios were projected using the integrated Markov model and cellular automata 
simulation (CA-Markov), and the impacts of LULCC on runoff yield were evaluated 
using the Soil and Water Assessment Tool (SWAT). The result revealed that more than 
half of the Lam Pachi Basin was covered by forest. From the CA-Markov simulation, 
approximately 7.6% of the LPC Basin would be converted from forest to agriculture  
in the next 35 yr. The simulation study using SWAT showed a minor increase in  
the water yield at a basin-wide level, while substantial changes were observed at  
the sub-watershed level. The increased water yield occurred in the watershed due to  
land conversion from forest to agriculture, particularly on steeper topography,  
whereas the same conversion in the flat lowlands resulted in reduced water yield.
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Introduction

 Surface runoff is a key component in complex hydrological 
process (Beven and Kirkby, 1979; Beven, 2011) and the 
quantification of runoff could indicate the availability of water 
resources in a basin and provides important information for 

water management (Kositsakulchai et al., 2018). Land-use/
land-cover (LULC) is one of the main factors affecting runoff 
processes (Bruijnzeel, 2006; Burt and Slattery, 2006) as 
changes in LULC affect water circulation in the hydrological cycle; 
subsequently they induce variability and uncertainty on the 
state of water resources and complexity in water management. 
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 During the last decades, LULC in Thailand has substantially 
changed due to socio-economic development and population 
growth. The Lam Pachi (LPC) Basin, a sub-basin of the Mae 
Klong River Basin in west Thailand, is a watershed that reveals 
the impact of changes. Many areas in the Basin have been 
subjected to flooding during recent times, including, in 2005 
and repetitive flooding from 2010 to 2013 in a particular area, 
with the recurrent flooding further inducing bank erosion and 
river sedimentation (Royal Irrigation Department, 2012) which 
increased the degree of flood hazard. Although many water 
agencies (Royal Irrigation Department, 2001; Department 
of Water Resources, 2004; Japan International Cooperation 
Agency and Royal Irrigation Department, 2005; Royal Irrigation 
Department, 2012) have conducted studies, particularly related 
to water resources management in the LPC Basin, only the 
current situation based on historical data was addressed. From 
the rapid development of information technology, the coupling 
of spatial satellite-derived data and a computer simulation tool 
now enable future projections of land and water scenarios.
 Land use and land cover change (LULCC), also known 
as land change, is a general term for human modification of 
the Earth’s surface (Ellis, 2013). Based on a highly uncertain 
future, multiple plausible futures need to be considered (Maier 
et al., 2016). The impacts of LULCC can be investigated 
by analyzing current trends and potential future scenarios 
(Krysanova and White, 2015). LULCC analysis using the 
Markov model has been reported in the literature since the 1970’s  
(Bell, 1974), up until more recent times (Jahan, 1986; Muller and  
Middleton, 1994; Arsanjani et al., 2011; Ayana and Kositsakulchai, 
2012; Kumar et al., 2014). Land change distribution has been 
simulated using cellular automata (CA) (Hyandye, 2015), a 
multi-agent system (Parker et al., 2003; Arsanjani, 2011) and 
from the integration of CA simulation and the Markov model 
(Arsanjani et al., 2011; Guan et al., 2011; Pandey and Khare, 2017).
 For many years, uncertainty has been considered 
extensively in the context of environmental and hydrological 
models (Maier et al., 2016). Many models have been evaluated 
for their performance in assessing the impact of LULCC 
(Tegegne et al., 2017). The Soil and Water Tool (SWAT model; 
Arnold et al., 1998) has been applied worldwide to different 
watershed scales, climatic zones, environmental conditions and 
management systems (Krysanova and White, 2015). Examples 
of SWAT applications can be found in the literature (Gassman 
et al., 2007; Gassman et al., 2014), including the applications of 
SWAT for assessing the impacts of LULCC on the hydrological 
conditions of watersheds (Ayana et al., 2012; Baker and Miller, 
2013; Ayana et al., 2014; Kositsakulchai et al., 2018).

 The current work aimed to quantify the changes of runoff 
yield in the Lam Pachi Basin, based on LULCC. Future 
scenarios of LULCC were projected using the cellular automata 
and Markov models and the impacts of LULCC were evaluated 
using the SWAT model.

Materials and Methods

Study area

 The Lam Pachi River (LPC; Fig. 1) is a tributary of the Mae 
Klong River, located in western Thailand. The tributary has a 
drainage area of 2,634 km² (representing approximately 8% of 
the Mae Klong River Basin) ranging from latitude 13°08’N to 
13°55’N and longitude 99°10’’E to 99°35’E. The main LPC 
course of 130 km runs northward from Ratchaburi province 
and joins the Khwae Noi River at the outlet of the Basin in 
Kanchanaburi province. The topography of the upstream 
basin is characterized by relatively high mountains and steep 
river valleys. The altitude ranges from 35 m above sea level 
(asl) at the LPC River outlet to 1,156 m asl at the Tanao Sri 
mountain range. The climate in the LPC Basin is influenced by 
the southwest monsoon from May to October and by tropical 
cyclones during the end of the rainy season from September 
to October (Biltonen et al., 2003). The total annual rainfall is 
1,060 mm of which almost 85% falls during the rainy season 
from May to October. The temperature in the hottest month, 
April, reaches an average maximum of 37°C while January is 
the coldest month with an average minimum temperature of 
17°C (Fig. 2).

Markov model and cellular automata simulation

 The integrated Markov model and cellular automata (CA) 
simulation (the CA-Markov model) is composed of three 
processes: evaluation of the transition probability matrix of 
the Markov Chain, modeling of the transitional potential using 
logistic regression, and simulation of land change using CA. 
In this study, the Modules for Land Use Change Evaluation 
(MOLUSCE) was selected for the analysis and simulation of 
land change. MOLUSCE is a plug-in for the QGIS 2.x software 
package and was developed by Asia Air Survey and NEXTGIS 
(2014) for land change modeling and simulation. Inputs 
required by MOLUSCE are LULC maps from different time 
periods and axillary data. The axillary data can be biophysical 
or socio-economic driving-factor data such as the road network 
and topography.
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Fig. 1 Lam Pachi Basin, western Thailand

Fig. 2 Monthly rainfall and maximum (Tmax) and minimum (Tmin) 
temperatures in the Lam Pachi River Basin (2005–2015)

 The Markov Chain determines the probability of change 
from one class to another class based on the so-called transition 
probability matrix (Equation 1) (Arsanjani et al., 2011):

  (1)

 where pij is the transformation probability of the ith land into 
the jth land, n and m are the land use classes. Equation 1 must 
satisfy the conditions presented Equations 2 and 3:

  (2)

  (3)

 The transitional potential of land was modeled using 
logistic regression. Land conversions occur at locations with 
the highest preference for the class of land at that time (Vrije 
University Amsterdam, 2015). The conversion preference of a 
location was calculated as a probability. The probability of land 
conversion (event y = 1) is defined by Equation 4:

  (4)

 where z = βTx = β0+β1x1+...+βnxn, with x and β representing 
column vectors of values of independent variables 1, x1,...xn 
and parameters (regression coefficients) β0, β1,...βn respectively, 
and f(z) is the logistic function defined by Equation 5:

  (5)
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 As y takes only the values 0 and 1, the probability of 
accepting the value 0 is equal to P {y = 0 x} = 1 - f(z).
 CA are dynamic models originally proposed by Ulam and 
Von Neumann in the 1940s (von Neumann and Burks, 1966). A 
CA model is defined as a 1- or 2-dimensional grid of identical 
automata cells (von Neumann, 1951). Each automata cell 
processes respective information, and proceeds in its actions 
based on data received from its environment, following rules 
that it stores or holds (Arsanjani et al., 2011). A basic CA model 
consists of five components: a grid space on which the model 
acts, cell states in the grid space, transition rules that determine 
the spatial dynamic process, a neighborhood that influences the 
central cell, and time steps (Moreno et al., 2009). Generally, 
a CA array is a 1- or 2-dimensional rectangular matrix of 
cells (Adamatzky, 2018). The most important concern in CA 
modeling is defining appropriate transition rules based on 
training data which control the model (Arsanjani et al., 2011).

Soil Water Assessment Tool model

 SWAT is an eco-hydrological model at the basin scale 
(Arnold et al., 1995; Arnold et al., 1998; Arnold et al., 2012). 
The model was developed more than 30 yr ago at the US 
Department of Agriculture and Texas A&M University 
laboratories in Temple, Texas, USA (Krysanova and White, 
2015). The SWAT model simulates the hydrological cycle 
based on the water balance Equation 6 (Neitsch et al., 2011):

  (6)

 where SWt is the final soil water content, SW0 is the initial 
soil water content on day i, R is the amount of precipitation 
on day i, Qsurf is the amount of surface runoff on day i, ET is 
the amount of evapotranspiration on day i, Wseap is the amount 
of water entering the vadose zone from the soil profile on 
day i and Qgw is the amount of return flow on day i, with all 
parameters expressed in millimeters.
 The Soil Conservation Service (SCS) curve number 
equation (Soil Conservation Service, 1972; Mishra and Singh, 
2003) was used to estimate surface runoff (Neitsch et al., 2011):

  (7)

 where Qsurf is the surface runoff or rainfall excess, R is the 
rainfall depth for the day, Ia is the initial abstraction which 
is generally approximated as 0.2S, where S is the retention 

parameter, with all parameters expressed in millimeters. S is 
defined as Equation 8:

 S = 25.4 (1,000 / CN - 10) (8)

 where CN is the SCS curve number for the day.

Model performance evaluation

 The model performance in the hydrological simulation 
was evaluated using the Nash-Sutcliffe efficiency (NSE) and 
the coefficient of determination (R2). The NSE is a normalized 
statistic that expresses the relative magnitude of the residual 
variance (“noise”) compared to the measured data variance 
(“information”) (Nash and Sutcliffe, 1970). NSE can range 
between -∞ and 1.0, with NSE = 1.0 being the optimal value 
(Moriasi et al., 2007). The NSE is defined in Equation 9:

  (9)

 where Oi is the observed value, Pi is the predicted value, 
and Ō and  are the means of the observed and predicted 
values, respectively.

The coefficient of determination (R2) describes the degree of 
collinearity between predicted and observed data, where the 
range of R2 lies between 0 and 1 and describes how much of 
the observed dispersion is explained by the prediction (Krause 
et al., 2005). R2 is defined in Equation 10:

  (10)

 where Oi is the observed value, Pi is the predicted value, 
and Ō and  are the means of the observed and predicted 
values, respectively.

Data 

 The SWAT model uses spatially-distributed topographic, 
land-use, soil and climate data as inputs (Krysanova and White, 
2015). The CGIAR-CSI SRTM 90 m digital elevation model 
(DEM) downloaded from http://srtm.csi.cgiar.org, was used 
to delineate the boundary of the watershed and to analyze the 
drainage patterns.
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 The digital land use and soil maps were obtained from 
the Land Development Department (LDD) of Thailand. The 
physical properties of soil were compiled based on data from 
the LDD using the pedo-transfer functions (Schaap et al., 2001; 
Pachepsky and Rawls, 2004).
 The climatic data (maximum and minimum temperature, 
sunshine duration, wind speed and relative humidity) covering 
a period of 11 yr (2005–2015) were obtained from the Thai 
Meteorological Department (TMD). The daily data were 
obtained from the two climatic stations, Kanchanaburi and 
Ratchaburi. The daily rainfall covering the period was obtained 
from six meteorological stations located in and nearby the 
study area.
 The observed streamflow data, required for the model 
calibration and validation, were obtained from the Royal 
Irrigation Department (RID) of Thailand at the hydrometric 
stations of Ban Kha (K25A), Ban Bo (K17), Ban Thap Tako 
(K61) and Ban Nong Phai (K62).

Methodology

 The methodology involved three main steps: (i) future land-
use projection using the CA-Markov model, (ii) SWAT model 
set-up and (iii) simulation of the runoff response to the land 
change.
 The future land-use projection started with data preparation. 
All vector maps were converted to raster format with a grid size 
of 60 m. The original LDD land-use maps were reclassified into 
five major classes (agriculture, forest, urban and built-up area, 
water body, miscellaneous). The transition probability matrix 
was evaluated using the Markov Chain model (Table 1). The 
land-use map in 2008 was the initial state, the map in 2015 
was the final state (transition step of 7 yr). The land transitional 
potential was modeled using the logistic regression. Three 
driven forces were selected as independent variables, namely 
topography (slope), transportation (distance from road) and 

neighbor (distance from existing built-up area). The CA 
simulated a new land-use state from a base initial state using 
the transition probability matrix and the transitional potential. 
The land-use map in 2015 defined the base initial state for 
CA simulation. The projected land-use map in the next 35 yr 
(2050) was obtained after five iterative simulations and also for 
intermediate periods at 2022, 2029, 2036 and 2043.
 The next step set up the SWAT model for the LPC Basin. 
The DEM with a mask (in raster format) was loaded to extract 
the area of interest, delineate the watershed boundary and 
digitize the stream networks. In this study, the minimum 
threshold area to delineate a sub-watershed was 2,500 ha. The 
land use and soil maps (in raster format) were imported into 
the model and overlaid. Multiple hydrologic response units 
(HRU) with 5% land use, 25% soil and 25% slope thresholds 
were used in this study. Daily rainfall and daily climatic data 
were prepared in the appropriate format and imported into the 
model. Parameter calibration for the model was performed 
using SWAT-CUP (Abbaspour, 2015). The data from January 
2010 to December 2015 on a monthly basis were used in the 
calibration. The remaining data (2005–2009) were reserved for 
validation. The more recent data were selected for calibration 
so that the model parameters would more closely reflect the 
current actual conditions of the basin. Three parameters that 
affected the runoff were selected based on guidance from 
previous studies (Kimala and Kositsakulchai, 2012; Ayana et 
al., 2014; Kositsakulchai et al., 2018): 1) CN2.mgt was the 
initial SCS runoff curve number for moisture condition II; 
2) GWQMN.gw was the threshold water level in the shallow 
aquifer for base flow (measured in millimeters); and 3) 
SOL_AWC.sol was the available water content of the soil layer 
(measured in millimeters H2O per millimeter of soil depth). 
The initial values of the parameters were first matched with the 
default values in the SWAT database. The model parameters 
were calibrated sequentially until the average simulated and 
measured values were in close agreement.

Table 1 Transition probability matrix of land use in Lam Pachi Basin from 2008 to 2015
2015

20
08

Land use Agriculture Forest Misc. Built-up Water
Agriculture 91.50% 1.06% 2.19% 4.95% 0.31%

Forest 3.82% 95.74% 0.11% 0.29% 0.04%
Misc. 30.82% 1.66% 63.53% 1.98% 2.01%

Built-up 14.39% 0.80% 1.79% 82.92% 0.10%
Water 5.81% 1.09% 1.31% 0.76% 91.03%



811E. Kositsakulchai et al. / Agr. Nat. Resour. 55 (2021) 806–815

 Finally, the runoff responses to the land change were simulated 
using the SWAT model set up for the LPC Basin. All simulations 
used the climate and rainfall data from 2010 to 2015. The LDD  
land-use map in 2015 (LU2015) represented actual conditions 
(reference scenario), while the simulated land-use maps using the 
CA-Markov model with the 7 yr transition steps (LU2022, LU2029, 
LU2036, LU2043, LU2050) represented future land conditions.

Results and Discussion

Future land use projection

 Table 2 shows the main land-use classes from 2015 to 2050. 
Land use classes in 2015 were derived from the LDD data, while 
those in 2022, 2029, 2036, 2043 and 2050 were simulated using 
the integrated CA-Markov models. Forest land represented the 
largest coverage in the LPC Basin, followed by agricultural 
land. Fig. 3 shows the LDD land-use map in 2015 (Fig. 3A) and 
the projected land-use for the next 35 yr (2050; Fig. 3B). The 
projected land-use (from 2015 to 2050) shows a decreased forest 
area of 19,573 ha (-7.6%), whereas agricultural land increases 

by the same proportion. In addition, the built-up area and water 
bodies will increase by approximately 667 ha (0.26%).

Estimation of Soil Water Assessment Tool model parameters

 Estimation of the SWAT model parameters for the LPC 
Basin used the climate and streamflow data from 2010 to 
2015 as the calibration dataset and from 2005 to 2009 as the 
validation dataset. Table 3 shows the ranges of the calibrated 
parameters and fitted values of the selected parameters (curve 
number, CN2.mg; aquifer threshold, GWQMN.gw; available 
soil water, SOL_AWC.sol).
 The model performance indicators during the parameter 
estimation (calibration) and the results (validation) are shown 
in Table 4. The hydrometric stations in the LPC River (K25A, 
K17, K61, K62) were located from upstream to downstream, 
respectively. Fig. 4 shows the comparison of the observed 
and predicted values of mean monthly stream flows at the 
hydrometric stations K25A and K17. Figs. 4A and 4B present 
the periods during validation (2005–2009) and calibration 
(2010–2015), respectively, of K25A, while Figs. 4C and 4D are 
the equivalent ones for K17.
 The simulation results using the calibrated parameters showed 
good agreement with the observed values of monthly streamflow 
(NSE values from 0.65 to 0.86 and R2 values from 0.82 to 0.94). 
Although some peak flows at the most upstream station (K25A) 
were not well captured (resulting in the lowest performance 
indicators [NSE = 0.647, R2 = 0.82]), the downstream stations 
(K17, K61, K62) satisfactorily simulated streamflow. During the 
validation, there was close agreement between the observed and 
simulated monthly streamflow (NSE values from 0.50 to 0.71 
and R2 values from 0.82 to 0.85). In general, model simulation for 
streamflow can be judged as satisfactory if NSE > 0.5 (Moriasi 
et al., 2007), and typically values of R2 > 0.50 are considered 
acceptable (Moriasi et al., 2007).

Table 2 Land use classes in 2015 derived from Land Development Department data and for future projections (2022–2050) simulated using CA-Markov model

Year
Land use (ha)

Agriculture Forest Miscellaneous Built-up Water body
2015 101,409 139,909 6,825 6,843 2,451
2022 107,583 135,866 4,917 7,023 2,048
2029 110,676 133,524 4,895 7,091 1,251
2036 112,124 130,873 4,721 6,920 2,799
2043 108,222 131,976 8,158 6,932 2,148
2050 121,083 120,336 6,057 7,175 2,785
2015–2050 19,674 -19,573 -768 333 334

(+7.6%) (-7.6%) (-0.3%) (+0.1%) (+0.1%)

Fig. 3 Land use in Lam Pachi Basin: (A) Land Development Department 
data in 2015; (B) future projection for next 35 yr (2050)
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Table 3 Model parameters selected for calibration 
Parameter Unit Method Initial value Range Fitted value
CN2.mgt - Relative Varied -10–+10% -9.55%
GWQMN.gw mm Absolute 1000 +0–+4000 +3582
SOL_AWC.sol mmH2O/mm soil Absolute Varied  +0–+0.4 +0.1455

CN2.mgt = initial SCS runoff curve number for moisture condition II; GWQMN.gw = threshold water level in shallow aquifer for base flow; SOL_AWC.
sol = available water content of soil layer

Table 4 Model performance indicators during parameter calibration and result validation
Hydrometric Calibration (2010–2015) Validation (2005–2009)
Station R2 NSE R2 NSE
K25A 0.818 0.647 0.821 0.504
K17 0.880 0.772 0.846 0.711
K61 0.894 0.792 N/A N/A
K62 0.936 0.863 N/A N/A

NSE = Nash-Sutcliffe efficiency; R2 = coefficient of determination; N/A = Observed data not available

Fig. 4 Comparison between observed (Qobs) and simulated (Qsim) values of mean monthly streamflow at Station K25A for periods: (A) 2005–2009; (B) 
2010–2015 and at station K17 for periods: (C) 2005–2009; (D) 2010–2015
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Projection of future runoff in Lam Pachi Basin

 The water yield (WY) of a watershed represents the total 
runoff, which is the sum of surface runoff (direct runoff), 
interflow and groundwater flow (base flow). Table 5 shows 
the values for the monthly and annual water yields in the LPC 
Basin from 2015 to 2050. SWAT was used to simulate the water 
yields using different land-use scenarios derived from the CA-
Markov model. The LU2015 scenario was the base scenario 
using the LDD land-use map. The LU2020, LU2029, LU2036, 
LU2043 and LU2050 scenarios were projected based on the 7 
yr transitional probability.
 The annual water yield of the LPC Basin slightly increased 
from 174.4 mm in 2015 to 179.8 mm in 2050 (Table 5).  
Fig. 5A shows the annual water yield at the sub-watershed level 
in 2015 (WY2015) and Fig. 5B shows it in 2050 (WY2050). 
The annual water yield at the sub-watershed level ranged from 
94 mm to 284 mm in 2015 and from 94 mm to 324 mm in 
2050. The high WY areas were in the central basin (watershed 
numbers 18, 19, 28, 35, 37) and in the southeastern basin 
(watershed numbers 44, 45, 47, 52). The low WY areas were 
the northern plain of the basin near the river outlet (watershed 
numbers 1, 2, 5, 6, 7, 8, 10) and the upstream part in the 
southern basin (watershed numbers 48, 53, 59, 61, 62). The 
high WY watershed was mainly characterized by sloping land 
dominated by forest, whereas the low WY watershed was on 
the plain and dominated by agriculture.
 The changes in WY were indicated using the ratio of 
WY2050 to WY2015 (Fig. 6), where ratio values greater 
than 1 represented an increased WY, while those less than 1 
indicated a decreased WY. Substantial changes were observed 

Table 5 Future projection of mean monthly water yield of Lam Pachi Basin from 2015 to 2050
Month Mean monthly water yield based on future land use (mm)

2015 2022 2029 2036 2043 2050
January 5.8 5.7 5.7 5.7 5.7 5.6
February 3.6 3.6 3.6 3.6 3.6 3.5
March 3.5 3.5 3.5 3.5 3.5 3.5
April 4.9 5.0 5.1 5.1 5.1 5.3
May 5.7 5.7 5.8 5.7 5.8 5.9
June 6.8 6.8 6.9 6.8 6.9 7.0
July 7.3 7.4 7.4 7.3 7.4 7.4
August 7.7 7.7 7.8 7.7 7.8 7.8
September 30.6 31.0 31.3 31.3 31.2 32.2
October 61.5 62.2 62.6 62.7 62.3 64.0
November 27.0 27.2 27.3 27.3 27.3 27.8
December 9.9 9.9 9.9 9.8 9.9 9.8
Annual 174.4 175.8 176.8 176.5 176.3 179.8

at the sub-watershed level. From Fig. 6, there were increased 
yields in the central basin (watershed numbers 13, 22, 25, 
30), while decreased yields occurred on the eastern plain of 
the basin (watershed numbers 12, 14, 18, 21, 26, 34, 37, 44, 
47). Increased water yield was associated with watersheds 
where there was land conversion from forest to agriculture, 
particularly on steeper topography, with the exception of 
watershed number 30 where there was an expansion in the 
built-up area.
 From the simulation results, land conversion from forest 
to agriculture increased the water yield in the LPC Basin. 
This finding was supported by various studies (Hibbert, 1967; 
Bosch and Hewlett, 1982; Costa et al., 2003). However, the 
land conversion from forest to agriculture could also result 
in a decreased water yield. Based on Hibbert’s review, the 
establishment of forest cover on sparsely vegetated land 
decreases water yield (Hibbert, 1967; Bosch and Hewlett, 
1982). As the sub-watershed responses were varied, there were 
only slight increases in the water yield for the whole LPC 
Basin.
 In summary, the results of the CA-Markov modeling 
indicated that approximately 7.6% of the land in the LPC Basin 
would be converted from forest to agriculture in the next 35 
yr. The built-up area and water bodies would increase to some 
extent. At the basin-wide level, these land changes would result 
in a minor increase in the water yield, while substantial changes 
were observed at the sub-watershed level. The increased 
water yield was predicted in watersheds where there was land 
conversion from forest to agriculture, particularly in on steeper 
topography, whereas the same conversion in flat lowland areas 
resulted in a reduced water yield.
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Fig. 6 Ratio of annual water yield in 2050 to 2015 (WY2050:WY2015) 
of Lam Pachi Basin, where polygon numbers indicate catchment 
identification

Fig. 5 Annual water yield of Lam Pachi Basin simulated using Soil Water 
Assessment Tool based on land conditions: (A) in 2015; (B) in 2050, 
where polygon numbers indicate catchment identification 
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