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Abstract
Strategic reservoir operation, a primary water management measures, plays a significant role in mitigating floods and 
droughts. Since the reservoir operation involves making complicated decisions on uncertain hydrological variables driven 
by climate variability, therefore, constructive tool for decision making like fuzzy logic is essential to optimize reservoir 
management and ensure water security. This study demonstrated fuzzy logic application to multiple reservoir operation in 
tropical region like Thailand. A Fuzzy Rule–Based Model (FRBM) exploiting FL approach was developed to control the 
upstream reservoir operation in the Upper Mun River Basin (UMRB) using the data from 2008 to 2021. Implementing 
FRBM for UMRB was conducted by identifying two key variables; available water storage and 7–day ahead predicted 
inflow, as fuzzy inputs. The fuzzy output of the system is the release fraction determined by three operational condition 
modules; flood, neutral, and drought. For flood module, fuzzy release is primarily determined by the predicted inflow. 
However, the determination of reservoir release for drought and neutral modules is influenced by the targeted water 
demand. The results of base case illustrate the capability of FRBM in increasing reservoir storages at the start of dry 
season by 123.56 MCM/yr in UMRB due to the new daily release schemes generated. This allows supplying water closer 
to the theoretical agricultural needs and gross irrigation water requirement potentially reducing the risk of water shortfall 
during consecutive dry years. Whereas, the maximum fuzzy release is constrained corresponding to safe channel capacity 
of tributaries and Upper Mun river, therefore, downstream flooding is accordingly prevented.
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Introduction

The influence of climate variability on water resource man-
agement has intensified flood and drought risks in many 
regions worldwide. The substantial changes in pattern, 
quantity and occurrence of hydrological data like rainfall 
and runoff contributes to the uncertainty of water availabil-
ity particularly for dam–reservoir system. Since the uneven 
water supply source in reservoir can be adaptively managed 
with the effective reservoir operation strategies, therefore, 
the modern Artificial Intelligence (AI) technologies has been 
widely adopted to mitigate flood and drought risk damage. 
In recent years, numerous studies have been devoted to the 
fuzzy logic applications in hydrology and water resources 
fields (Kambalimath and Deka 2020). Fuzzy logic, a well–
known approach dealing with vagueness and ambiguity, 
was firstly introduced in 1965 by Prof. L.A. Zadeh (Zadeh 
1965; Bai and Wang 2006). It is considered as a subfield of 
symbolic AI using linguistic representations to solve ambig-
uous problems. Fuzzy Rule–Based Model (FRBM) which 
is a specific modeling technique exploiting fuzzy logic 
approach, has become a constructive and innovative tool 
due to their ability to handle the uncertainties of hydrologi-
cal system involved (Bardossy et al. 1995). It has been suc-
cessfully applied for various specific tasks in water resource 
management such as single– and multi–purpose single and 
multiple reservoir operation (Panigrahi and Mujumdar 
2000; Mohan and Prasad 2006; Rajendra et al. 2020; Faris 
et al. 2021), irrigation water allocation (Ibrahim et al. 2018), 
rainfall– runoff modeling (Hendecha et al. 2001), flood and 
drought prediction (Pesti et al. 1996; Gogoi and Chetia 
2011; Shah 2020; Tabbussum and Dar 2021; Zahran et al. 
2023), flood and drought risk assessment (Jiang et al. 2009; 
Shiravand and Bayat 2023), hydropower generation control 
(Faris et al. 2021), and groundwater quality and risk assess-
ment (Venkat Kumar et al. 2009; Caniani et al. 2011), etc.

For reservoir operation, FRBMs were successfully devel-
oped to derive reservoir operating rules for both single pur-
pose and multipurpose reservoirs to improve efficiency of 
reservoir operation practice. To model with FRBM for res-
ervoir operation, the reservoir releases were determined in 
association with reservoir storage level, estimated inflows, 
and water demand. These achieved research results show 
the robustness, model performance, and the ease of model 
construction by fuzzy logic approach for complex reservoir 
systems (Shrestha et al. 1996).

Additionally, fuzzy rules were dynamically generated 
for reservoir operation and adjusted to control the amount 
of reservoir releases based on the relevant factors includ-
ing reservoir state, inflow, weather forecast, and water 
use patterns (Mohan and Prasade 2006). Furthermore, the 
use of fuzzy logic for reservoir operation schemes with 

reduced rules was suggested to reduce model complexity 
and redundancy (Sivapragasam et al. 2008). Fuzzy logic–
based modelling was also adopted to maximize hydropower 
production and downstream water demands in semi–arid 
region. Compared to other techniques such as discrete dif-
ferential dynamic programming, non–linear programming, 
and linear programming, fuzzy logic shows increased 
power production. Importantly, it offers reservoir opera-
tors the flexibility and convenience to develop and apply 
custom fuzzy rules (Faris et al. 2021). FRBM for multi–
reservoir operation of two serial reservoirs was developed 
based on monthly historical operation data. These FRBM 
results show the success in water resource management by 
enhancing reservoir operation performances for irrigation, 
water supply, and hydropower generation. Additionally, 
the model demonstrates the potential for mapping reservoir 
manager’s experience with fuzzy logic operation (Mohan 
and Prasad 2006). FRBM, incorporating an optimal set of 
inflows, storage volumes, and reservoir releases, was inte-
grated with dynamic programming to derive an operating 
policy for the reservoir system in arid region. This approach 
achieved good performance in meeting target system per-
formance metrics while maintaining efficient computational 
requirements (Mousavi et al. 2005). Furthermore, FRBM 
incorporating a new fuzzy inference system called total 
fuzzy similarity, was applied for real time reservoir opera-
tion. This application highlighted the strong mathematical 
background of fuzzy inference system for fuzzy reasoning 
(Dubrovin et al. 2002). These global case studies exhibit the 
effectiveness of FRBM in solving reservoir operation prob-
lems by utilizing fuzzy logic to manage uncertainties and 
make informed decisions to reservoir operators.

The general work flow of fuzzy logic system consists 
of four main components; (1) fuzzification, (2) fuzzy rule 
base, (3) inference engine, and (4) defuzzification (Adnan 
et al. 2011). Fuzzification stage converts crisp input data 
into fuzzy sets. These fuzzy sets represent vague concepts 
with degrees of membership. Membership Functions (MF) 
is used to specify the degree of membership values (μ) 
ranging from 0 to 1 for each input value within a fuzzy set. 
Fuzzy rule–based stage generally collects a set of “if–then” 
rules that connect input fuzzified values to desired outputs. 
Experts or data analysis can help define these rules based on 
domain knowledge or training data. Inference engine evalu-
ates the degree of truth for each activated rule and com-
bines them into a final fuzzy output. Mamdani and Sugeno 
methods are types of inference engines commonly used in 
FRBM. Mamdani method proposed by Ebrahim Mamdani 
in 1975 (Mamdani & Assilian 1975), is suitable when the 
desired output is qualitative or involves linguistic descrip-
tions. Meanwhile, Sugeno method introduced by Takashi 
Takagi and Michio Sugeno in 1985 (Sugeno 1985), is 
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efficient when the desired output is numerical and a clear 
mathematical relationship exists between the input and 
output variables. Selecting between Mamdani and Sugeno 
inference engines depend on the specific needs of FRBM 
and the nature of the desired output. However, the Sugeno 
inference engine works well with dynamic nonlinear sys-
tem incorporating optimization and adaptive techniques 
(Blej and Azizi 2016). Defuzzification is the final stage 
where the fuzzy output generated by the inference engine 
is transformed into a crisp value for real world applications. 
The defuzzification techniques commonly used to convert 
fuzzy set into a single precise value are Mean of Maximum 
method (MOM), Center of Gravity method (COG) and the 
Height Method (HM) (Bai and Wang 2006). The different 
defuzzification methods exhibit the different performances 
depending on its applications. Notably, there is no specific 
defuzzification methods that can achieve desired perfor-
mance in all conditions (Mogharreban and DiLalla 2006).

In this study, Fuzzy Rule–Based Model (FRBM) was 
developed for upstream operation of multiple reservoirs in 
the Upper Mun River Basin (UMRB) where five main dams; 
Mun Bon (MB), Lamchae (LC), Lam Takhong (LTK), Lam 
Phraphoeng (LPP), and Lower Lam Chiengkrai (LLCK), are 
parallelly connected. The fuzzy–based reservoir releases of 
these dams are yielded to recommend the new daily release 
schemes for long–term reservoir operation aiming to ensure 
water security and mitigate flood and drought risks in the 
region.

Study area

The Mun River Basin (MRB) is a sub–basin of the Greater 
Mekong River Basin as shown in Fig. 1. It discharges 
approximately 10% of the river runoff into the Mekong 
River (Kingston et al. 2011). MRB has suffered seasonally 
from flooding during wet season (May.–Oct.) and drought 
during dry season (Nov.–Apr.). In 2022, a large agricultural 
and residential area particularly in low–lying floodplains 
along Mun River and tributaries was inundated due to the 
tropical storm Noru (Bangkok post 2022). Moreover, MRB 
has regularly experienced severe drought due to substantial 
variability of rainfall amount leading to crop yield reduc-
tion and water shortfall for other demand sectors including 
water consumption, industrial use and ecology. MRB can 
be divided into three sub–basins: Upper Mun, Middle Mun, 
and Lower Mun having diverse characteristics in terms of 
topography of drainage basin, flow pattern, and land use 
activities. The Upper Mun River Basin (UMRB) is an upper 
part of MRB situated mostly in the Khorat Plateau of the 
northeastern Thailand occupying the drainage area of 16,254 
km2. Operating the dams and reservoirs in UMRB have 

been carried out by the Royal Irrigation Department (RID) 
to supply water for both agricultural and non–agricultural 
needs, such as drinking water, industrial use and ecologi-
cal need. The total command area for irrigation in UMRB 
operated by RID is approximately 585.60 square kilometer 
(km2). Annual rainfall over the basin ranges between 1,047 
and 1,229 millimeters, with more than 74% occurring dur-
ing the wet season (May.–Oct.). The total annual inflow of 
the five main dams, representing the water source poten-
tial and water availability, varies significantly, ranging from 
218 to 1,628 million cubic meters per year (MCM/yr). This 
deviates considerably from the Annual Water Allocation 
Plan (AWAP) which is established based on water availabil-
ity for allocating water to satisfy all demand sectors across 
the entire basin.

Materials and methods

To achieve the research’s goal in mitigating floods and 
droughts in UMRB, the methodology employed in this 
study entails three main parts; (1) modelling fuzzy rule–
based control in UMRB, (2) developing fuzzy rule–based 
scenarios for reservoir operation simulation to analyze the 
flood and drought situations in different perspectives, and 
(3) evaluating the capability of FRBM for flood and drought 
mitigation in UMRB.

Modelling fuzzy rule–based control in the Upper 
Mun River Basin

The Fuzzy Rule–Based Model (FRBM) for multiple res-
ervoir operation in UMRB was formulated based on the 
physical–based reservoir system as graphically shown in 
Fig. 2 using long–term data from 2008 to 2021. The daily 
water balance–based reservoir data and hydrological data 
collected from the Regional Office 8 of Royal Irrigation 
Department, Thailand, were used as model inputs. As the 
controlled releases of each dam in UMRB have been sup-
plied to the local demand downstream, therefore, estimat-
ing the agriculture and non–agriculture water needs were 
carried out and used in the model. The theoretical water 
demand for agriculture encompassing four operation and 
maintenance projects was accordingly quantified; Mun Bon 
and Lam Chae (MB–LCOM), Lam Takhong (LTKOM), 
Lam Phraphoeng (LPPOM), and Lower Lam Chiengkrai 
(LLCKOM). The Net Irrigation Water Requirement (NIR) 
and Gross Irrigation Water Requirement (GIR) with Irriga-
tion Efficiency (IE) of 60% which is regarded as good irri-
gation, were then estimated as illustrated in the Eqs. (1) and 
(2).
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Nakhon Ratchasima Province which was collected from 
Provincial Waterworks Authority of Thailand. The amount 
of diverted water for the industrial use from 2008 to 2021 
was collected from private sectors along the rivers. Addi-
tionally, ecological water demand was included in the 
model in association with the established water allocation 
plan by RID.

The fuzzy rule–based upstream control system for 
UMRB was developed separately based on single reservoir 
operation of the five main dams built across river tributaries. 
However, to maintain downstream flow regulation in FRBM 
for the multiple reservoir operation system in UMRB, the 
combined releases from the five dams must be maintained 
within the safe channel capacity of each river tributaries and 
UMR, between its minimum and maximum flow constraints 
before discharging water into the Middle and Lower Mun 
Rivers. Therefore, data on flow conditions at key gauging 

NIR = ETc + PE?RE  (1)

GIR = NIR/IE  (2)

When GIR is gross irrigation water requirement, NIR is net 
irrigation water requirement, ETc is theoretical crop water 
requirement, PE is percolation loss, and RE is effective rain-
fall. All variables are in volume unit.

This calculation was based on the average long–term 
cultivated area of MB–LCOM, LTKOM, LPPOM, and 
LLCKOM which are 229.83, 144.51, 197.30, and 29.70 
km2, respectively in wet season and 90.97, 64.34, 102.11, 
and 0.29 km2, respectively in dry season. For the non–agri-
culture needs identified in the model, it covers eight nodes 
of municipality water demand supplied from dams namely, 
Khon Buri, Pak Thong Chai, Chokchai, Sikhiu, Pakchong, 
Non Sung, Klong Pahi Prison and Municipal Districts and 

Fig. 1 Map of the Upper Mun River Basin
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ahead predicted inflow with respect to maximum historical 
inflow as expressed in Eq. 3.

PI = (Ip ∗ 100) /Imax  (3)

When PI is predicted inflow in percent, Ip refers to 7–day 
ahead predicted inflow obtained by machine learning tech-
nique using XGBoost algorithm and Imax represents maxi-
mum historical inflow. Both Ip and Imax are measured in 
volume unit.

The fuzzy output of the system is specified in term of the 
release fraction determined by the proposed operational con-
dition modules in association with targeted water demand 
and percent of predicted inflow. The membership functions 
for release fraction were defined as Low (L), Slightly Low 
(SL), Suitable (S), Slightly More (SM), More (M). Once the 
inputs were fuzzified, a fuzzy operator (AND) combined 
their membership degrees, representing the degree of fulfill-
ment for the rule’s conditions. This degree is then used with 
the output membership function to obtain a fuzzy output for 
the rule. In fuzzy logic, when an input value falls within 
the overlap of two or more membership functions, the cor-
responding rules are activated. The aggregation method 
then combines the membership degrees of these activated 
rules to generate a single output value for the system. There-
fore, the equal weighted average method was employed for 
aggregation in this study.

stations downstream of all dams along the river were used 
to identify minimum and maximum flow constraints for the 
model: M.49 and M.50 for MB–LC dams, M.180 for LPP, 
M.164 for LTK dams, and M.188 for LLCK dam. Addition-
ally, data at two gauging stations were included for down-
stream control: M.2 A located downstream of the combined 
MB–LC–LPP dams, and M.184 situated for downstream 
control before flowing into the Middle Mun River. In other 
words, the adjustment of fuzzy releases of all dams was 
made by considering minimum and maximum flow con-
straints on its tributary and UMR.

The determination of fuzzy releases from reservoirs 
by fuzzy rule–based model is based on four main factors: 
available water storage in reservoirs, 7–day ahead predicted 
inflow, targeted water demand, and downstream flow condi-
tion as illustrated in block diagram in Fig. 3. Fuzzification 
of two inputs, including available water storage and pre-
dicted inflow, was performed to create fuzzy variables. For 
this study, fuzzification was performed on the inputs of each 
reservoir. Expert knowledge was used to define the degree 
of membership functions for each input variable. Member-
ship functions for available water storage were defined as 
Low (L), Medium (M), High (H), and Very High (VH), con-
sidering percentage of active storage. Similarly, the mem-
bership functions of predicted inflow (PI) were assigned 
as Low (L), Slightly Low (SL), Normal (N), Slightly High 
(SL), and High (H), considering the percentage of the 7–day 

Fig. 2 Schematic diagram of river flow and water supply nodes in the Upper Mun River Basin
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 ● Neutral Module: This module specifies a release fraction 
of 1.0 of the targeted demand indicating normal operat-
ing conditions as expressed in Eq. 4. In other words, tar-
geted demand is fully met by the reservoir water without 
drought or flood risks.

 ● Flood Module: During flood periods, water release 
from each reservoir is primarily determined by the pre-
dicted inflow and specific downstream flow conditions. 
Therefore, this module determines a release fraction of 
0.8–1.2 of predicted inflow during floods as expressed 
in Eq. 5, aiming to release water strategically to miti-
gate flood occurrence. Accordingly, the volume of fuzzy 
rule–based release is reduced to prevent exceeding the 
maximum river capacity at the gauging stations. In flood 
module, 20 fuzzy rules were generated to specify the 
reservoir release of each dam.

Rt = Dt;Droughtandneutralmodules (4)

Rt = Ipt;Floodmodule (5)

To account for seasonal variations in reservoir release 
control system for flood and drought mitigation, 20 rules 
of operational condition modules considering the available 
storage and historical inflow with three linguistic variables: 
Drought (D), Neutral (NT), and Flood (F), were generated. 
These variables represent different operating conditions and 
accelerate the decision–making process through the degrees 
of membership function of release fraction.

 ● Drought Module: The determination of reservoir release 
is strongly influenced by the targeted water demand. 
Therefore, this module determines a release fraction of 
0.8–1.2 of targeted water demand during droughts as ex-
pressed in Eq. 4, aiming to fulfil local demand. Howev-
er, the volume of fuzzy rule–based release is adjusted by 
increasing to meet the minimum flow requirement when 
the downstream flow falls below the daily minimum 
flow required for ecological needs. In drought module, 
15 fuzzy rules were generated to specify the reservoir 
release of each dam.

Fig. 3 (a) Block diagram of a fuzzy rule–based model (b) Upstream reservoir operation control and downstream flow control
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the Annual Water Allocation Plan (AWAP) from 2008 to 
2021 for both agricultural and non–agricultural sectors of 
five main dams in UMRB established by RID, was used 
to develop the fuzzy rule–based scenarios, as detailed 
following.

(1) Base Case: the historically actual controlled releases 
from five main dams in UMRB were used as targeted 
water demand for reservoir operation simulation by 
FRBM.

(2) Scenario 1: both agricultural and non–agricultural water 
demands used for reservoir operation simulation in 
UMRB relied on AWAP data.

(3) Scenario 2: an estimate for long–term agricultural 
water demand in the irrigation schemes representing 
theoretical water requirement for agriculture was used 
in FRBM, while non–agricultural demand relied on 
AWAP data.

In other words, the fuzzy releases were specified based on 
the different targeted water demand of these three scenarios.

Evaluating the capability of FRBM for flood and 
drought mitigation in UMRB

To evaluate how well FRBM handles drought situation in 
UMRB, the potential in increasing reservoir water storage 
of each dam at the start of planting dry season in Novem-
ber, was accordingly examined. The increased reservoir 
water storage measured as percentage increase indicates 
the higher potential to satisfy targeted water demand and 
reduce drought risk in the region. Consequently, average 
annual water storage and ending water storage in October 
of all dams was investigated and annual releases were com-
pared with the historical release data. The capability to cope 
with flood of fuzzy rule–based upstream control system by 
FRBM was governed by the downstream flow restrictions 
as aforementioned.

Results and discussion

Specific reservoir data and current water status in 
UMRB

Detailed information on specific reservoir data and current 
water status in UMRB including water availability, water 
requirement, and water allocation are presented in Table 2. 
Water availability was assessed based on reservoir inflow 
data from all dams averaged from 2008 to 2021 to unveil 
the available principal water supply source in the basin. 
Reservoir release refers to the historical controlled outflow 

When Rt is daily reservoir release volume, dt is daily tar-
geted water demand volume, Ip is 7–day ahead predicted 
inflow volume, and α is defuzzified release fraction ranging 
between 0.8 and 1.2 for flood and drought modules, and 1.0 
for neutral module.

The Center of Gravity (COG) method was used for 
defuzzification process to convert the output fuzzy set into 
a crisp value of defuzzified release fraction of each dam. 
MATLAB’s fuzzy logic toolbox and Simulink were used 
to develop a fuzzy logic controller for upstream and down-
stream operation control in UMRB. Lastly, the fundamental 
reservoir water balance equation expressing the principle 
of conservation of mass applied to the water within each 
reservoir was deployed for long–term reservoir operation 
simulation in UMRB as shown in Eq. 6.

St+1 = St + It − Et − Rt  (6)

When St+1, St is daily reservoir water storage at time t + 1 and 
t, It is daily historical inflow, Et is daily evaporation losses 
from reservoir, and Rt is the daily fuzzy–based release.

Developing fuzzy rule–based scenarios for reservoir 
operation simulation

To develop fuzzy rule–based scenarios for reservoir opera-
tion simulation in UMRB, three different scenarios due to 
distinct types of daily targeted water demand, were accord-
ingly generated; (1) Base Case, (2) Scenario 1, and (3) Sce-
nario 2 as summarized in Table 1. Formulating distinct types 
of targeted water demand involves considering the current 
water requirement for UMRB, which can be divided into 
two parts; (1) agricultural water demand which is the quan-
tity of water required for the irrigation schemes in UMRB 
as aforementioned and (2) non–agricultural water demand 
which includes industry and municipality water uses and 
environmental needs of five main tributaries of Mun Riv-
ers namely, MB, LC, LTK, LPP, and LLCK. Additionally, 

Table 1 Fuzzy rule–based scenarios developed for reservoir operation 
simulation by FRBM
Scenario Demand Fuzzification Input

Agricultural Water Demand Non–Agricul-
tural Water 
Demand

Actual 
Con-
trolled 
ReleaseAnnual Water 

Allocation 
Plan

Estimated 
Demand in 
Irrigation 
Scheme

Annual Water 
Allocation Plan

Base 
Case

– – – ⎫

Scenario 
1

⎫ – ⎫ –

Scenario 
2

– ⎫ ⎫ –
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volume from each dam, supplying various water demand 
sectors downstream. The cultivated area size of five irriga-
tion schemes collected in 2021 and the total amount of esti-
mated GIR needed for irrigation were also presented. The 
water allocation plan established by RID acts as the opera-
tional guideline policy for releasing reservoir water to meet 
demand in practice. However, it can be adjusted to moderate 
flood and drought risks during the critical periods.

It is revealed that five major dams in UMRB hold an 
average water availability of 882 MCM/yr, slightly exceed-
ing the average total controlled releases of 717 MCM/yr 
from all reservoirs. However, water availability of each dam 
greatly fluctuates over a year. This substantial variation of 
reservoir inflow leads to flooding at all dams except MB 
as the average inflow occasionally exceeds their reservoir 
capacity in critical wet years, raising concerns regarding 
flood risk water management particularly in 2011, 2013, 
and 2021. Consequently, heightening the spillway crest to 
increase the storage volume in some reservoirs like LTK 
and LPP has been implemented by RID to moderate flooded 
water by structural measure. Moreover, it is found that only 
6.40–22.78% of water availability lies in dry season (Nov. 
–Apr.) which is much less than the estimated GIR indicating 
the incapability to supply enough water throughout planting 
dry season.

The cultivated area in wet season (May.–Oct.) from 2007 
to 2021 remained constant at 603.99 km2, while the dry sea-
son area fluctuated substantially, ranging from 0 to 504.44 
km2 as shown in Fig. 4. It is found that the cultivated area 
size in dry season (Nov.–Apr.) particularly in critical dry 
years like 2015–2019 is significantly decreased due to lim-
ited water availability from reservoirs and less rainfall in 
dry season.

Moreover, high estimates of Gross Irrigation Water 
Requirement (GIR) compared to average reservoir releases 
and AWAP, suggest an increased risk of drought in this 
region. The total volume of estimated GIR in the irrigation 
schemes calculated in 2021 is 934 MCM/yr and 58.27% is 
found in dry season. While the average volume of AWAP is 
planned to be 644 MCM/yr, meeting agricultural and non–
agricultural water demands by 67% and 33%, respectively.

Fig. 5 shows that in normal and wet years during 
2009–2011, 2013, and 2020–2021, the water releases from 
the reservoirs often exceeded AWAP by 19.54–100.93%. 
Conversely, reservoir releases during the consecutive dry 
years of 2015–2019 significantly declined by − 2.14% to 
− 42.97% compared to AWAP, contributing to a water short-
age, especially for the agricultural sector in the region. In 
addition, the average available storage of five main dams 
were also explored indicating that the percentages of avail-
able water storage are ranged from 43.45 to 56.48% of 
the total capacity of reservoir. However, the initial storage 
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and wet year (2011) as illustrated in Fig. 5. While, the yearly 
pattern of fuzzy–based releases of all dams closely matched 
observed releases from all dams as shown in Fig. 6. During 
critical drawdown periods, fuzzy–based releases prioritize 
meeting targeted water demand, with defuzzified release 
fraction from 80 to 120% of targeted water demand. How-
ever, the fuzzy releases are modified to maintain the mini-
mum ecological requirement in critical drought periods. 
Conversely, during critical refilled periods, they prioritize 
reservoir inflows, with releases ranging from 100 to 120% 
of 7–D ahead predicted inflow. These releases are further 
adjusted to avoid exceeding safe channel capacity at key 
downstream gauging stations along river tributaries and 
Upper Mun river for flood mitigation.

Fig. 7 presents the long–term fuzzy rule–based simula-
tion results for the base case scenario including average 
reservoir storage, end–of–wet season (October 31st ) and 
annual releases for each dam. It is revealed that average 
fuzzy rule–based storages for four main dams; MB, LC, 
LTK, and LPP dams increased substantially by + 53.12%, 
+ 1.14%, + 25.38%, and + 54.49%, respectively. Similarly, 
the average fuzzy rule–based storage at the end of the wet 

significantly decreases at the start of the dry season’s culti-
vation period and slightly increases at the beginning of the 
wet season’s cultivation period. Therefore, altering daily 
water release pattern by FRBM, a non–structural measure, 
is aimed to enhance reservoir water storages prior to the dry 
season for water scarcity alleviation in the region.

Long–term reservoir operation simulation 
by fuzzy rule–based model

This section analyzes long–term simulation results for 
multi–reservoir operation in UMRB obtained from the 
developed fuzzy rule–based model. Three scenarios vary-
ing targeted water demand, namely, Base Case, Scenario 
1, and Scenario 2 (as detailed in Sect. 2.2), were used for 
simulation and compared the simulated results with actual 
reservoir operations from 2008 to 2021. Simulating the base 
case scenario with a fuzzy rule–based control showed that 
the daily patterns of fuzzy–based releases for all dams in 
UMRB differed significantly from those observed in actual 
reservoir operations particularly in critical dry year (2019) 

Fig. 5 Water allocation plan and 
actual releases in the Upper Mun 
River Basin from 2008 to 2021

 

Fig. 4 Cultivated area size in the 
Upper Mun River Basin from 
2007 to 2021 in (a) wet season 
and (b) dry season
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Fig. 6 Daily fuzzy–based releases obtained from base case scenario in critical dry and wet years
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Fig. 7 Long–term annual simulation results for the base case scenario using FRBM
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LTK, and LLCK dams are likely decreased by − 12.65%, 
− 20.10%, and − 0.60%, respectively. This signifies the 
necessity to reevaluate establishing annual water alloca-
tion plans for LC, LTK, and LLCK dams. Alternatively, 
the water allocation for these dams should be reduced by 
− 19.64, − 34.94, and − 0.09 MCM/yr, respectively to align 
with the current reservoir operation. However, implement-
ing any adjustment to the strategic water allocation plan 
requires agreements and consensus between the dam opera-
tors and relevant stakeholders particularly a group of farm-
ers in the area who are allocated irrigation water of more 
than 70% of total demand.

Scenario 2 uses an Estimated Gross Irrigation Water 
Requirement (EGIR) to determine agricultural water 
demand representing its theoretical crop water uses and 
water delivery to five irrigation schemes in UMRB. It then 
follows the annual water allocation plan for non–agricul-
tural water demand. The calculation in Table 2 shows that 
total amount of EGIR in wet and dry seasons which is 
933.81 MCM/yr, is significantly higher than both the annual 
water allocation plan and the actual controlled release from 
all reservoirs which are 643.69 and 717.22 MCM/yr, respec-
tively. This leads to the reduction in average storages for 
three main dams; MB, LC, and LTK by − 2.11%, − 30.93%, 
and − 62.96%, respectively, compared to the actual opera-
tion. In other words, the total water storage of these three 
reservoirs was relatively declined by 159.10 MCM/yr due 
to full potential irrigation supply recommended for this 
demand scenario. Additionally, this simulated result done 
by FRBM aligns with the historical evidence that LTK dam 
historically experienced severe droughts in 2019–2020, 
LLCK dam in 2014–2016, and LC dam faced reservoir 
water storage decline in 2013 and 2019–2020. Therefore, 
these simulated results performed by FRBM suggests that 
based on EGIR calculation used for non–deficit irrigation, 
managing proper cultivated area sizes in both wet and dry 
seasons might be important for good irrigation practice in 
UMRB. In other words, implementing effective demand 
side management plan can potentially alleviate crop water 
stress and help mitigate reductions in crop yield correspond-
ing to water availability.

Conclusion

In tropical region like Thailand, the substantial change of 
hydrological and climate data driven by the climate vari-
ability has led to more frequent and intense floods and 
droughts. Consequently, effective water resource planning 
and management measures have become progressively 
more important. Among the water management measures 
for flood and drought risks mitigation, strategic reservoir 

season also increased by + 42.09%, 1.06%, 18.82%, and 
39.36% for MB, LC, LTK, and LPP dams, respectively. 
The increased storages at the end of the wet season of these 
four dams, as a result of the fuzzy rule–based model, sig-
nifies a higher initial storage at the start of the dry season 
to supply potentially for agricultural and non–agricultural 
needs throughout the dry periods. Additionally, the fuzzy 
rule–based model can also help slightly decrease the aver-
age water storage of LLCK dam by − 0.60%. This can help 
mitigate flood risks at LLCK dam which is recurrently 
experienced by enormous inflow due to its small reservoir 
capacity like in 2011 and 2021. Compared to annual actual 
releases, fuzzy rule–based models suggest slight decreases 
in water releases from all dams: − 5.40% for MB, − 0.84% 
for LC, − 2.62% for LTK, − 2.18% for LPP, and − 2.55% for 
LLCK. While the annual pattern of fuzzy–release conforms 
well with the observed one.

This long–term simulation of multi–reservoir operation 
in UMRB using fuzzy rule–based models suggest their 
potential to mitigate drought and flood risks in this region. 
The new daily release schemes generated by FRBM have 
the potential to increase reservoir storages at the begin-
ning of the dry season of four main dams by approximately 
123.56 MCM/yr which 33.02%, 1.44%, 35.71%, and 
29.38% are contributed to MB, LC, LTK, and LPP dams, 
respectively. Furthermore, during the critical dry years from 
2014 to 2019, the average fuzzy rule–based storage was 
significantly greater than the observed storage for MB, LC, 
LTK, and LPP dams. This allows supplying water closer 
to the theoretical agricultural needs and GIR (as defined in 
Scenario 2), potentially reducing the risk of water shortfall 
during consecutive dry years, as a result of increased avail-
able water by fuzzy rule–based models.

Table 3 shows long–term fuzzy rule–based simulation 
results for scenarios 1 and 2, focusing on reservoir water 
storage and release compared to actual operations.

Scenario 1 uses a daily targeted water demand based on 
AWAP. The total amount of planned water demand averaged 
from 2008 to 2021 is quantified as 643.69 MCM/yr which is 
substantially lower than the total reservoir releases of 717.22 
MCM/yr. This leads the fuzzy rule–based model to recom-
mend different water release schemes for all dams compared 
to both the actual operation and the base case scenario. How-
ever, MB and LPP dams experienced a significant increase 
in average reservoir storage of approximately + 89.31% and 
+ 140.52% compared to actual operation. This points out 
the need to adjust the annual water allocation plans for MB 
and LPP dams. Specially, increasing the water allocation by 
+ 68.60 and + 95.07 MCM/yr for MB and LPP dams, respec-
tively is recommended to better reflect current reservoir 
management of these two dams and enhance its operational 
efficiency. In contrast, average fuzzy–based storages of LC, 
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current operating conditions indicate that altering the daily 
release schemes by FRBM, while the annual release vol-
umes are significantly closer to historical outflow, can help 
increase the total water storage in UMRB by 123.56 MCM/
yr. This indicates that allocating reservoir water can be well–
operated sufficiently to theoretical crop water demand and 
other water sectors especially in consecutive dry years espe-
cially from 2014 to 2019 due to increased water availabil-
ity in reservoirs. For downstream flood control by FRBM, 
the maximum fuzzy release was constrained corresponding 
to safe channel capacity of river tributaries downstream of 
all dams, therefore, downstream flooding was accordingly 
prevented. Additionally, the simulated results performed 
by FRBM for Scenario 1 incorporating AWAP as targeted 

operation is regarded as the effective means to give the 
detailed decision guidelines for the operators. Since reser-
voir operation deals with making complicated decisions on 
uncertain hydrological variables to determine water release, 
therefore, AI–based constructive tool like fuzzy logic is nec-
essary for decision making process. In this study, a fuzzy 
rule–based control approach was demonstrated for multi–
reservoir operation in the Upper Mun River Basin (UMRB) 
aiming to mitigate floods and droughts in the region. The 
fuzzy–based release schemes for three different simulation 
scenarios varying targeted water demand were generated 
and presented to illustrate flood and drought solutions by 
utilizing Fuzzy Rule–Based Model (FRBM) as the opera-
tional tool. The results of base case scenario reflecting same 

Table 3 Long–term fuzzy rule–based simulation results for two scenarios
Reservoir Avg. Observed 

Storage
Avg. Fuzzy–
Based Storage

Avg. Observed Stor-
age at the End of Wet 
Seasona/

Avg. Fuzzy–based 
Storage at the End of 
Wet Seasona/

Observed 
Release

Fuzzy–
based 
Release

Unit MCM MCM MCM MCM MCM/yr MCM/yr
Scenario 1b/

MB–Avg. 76.81 145.40 101.39 173.48 85.49 75.71
MB–Difference + 68.60 + 72.09 –9.78
MB–%Increase + 89.31 + 71.10 –11.44
LC–Avg. 155.31 135.67 202.68 189.49 178.88 168.32
LC–Difference –19.64 –13.19 –10.56
LC–%Increase –12.65 –6.51 –5.90
LTK–Avg. 173.82 138.88 241.57 197.35 214.40 214.79
LTK–Difference –34.94 –44.22 + 0.39
LTK–%Increase –20.10 –18.30 + 0.18
LPP–Avg. 67.66 162.72 97.30 193.53 176.11 114.98
LPP–Difference + 95.07 + 96.23 –61.13
LPP–%Increase + 140.52 + 98.90 –34.71
LLCK–Avg. 14.29 14.20 19.45 19.11 62.34 60.75
LLCK–Difference –0.09 –0.33 –1.59
LLCK–%Increase –0.60 –1.71 –2.55
Scenario 2b/

MB–Avg. 76.81 75.19 101.39 104.65 85.49 86.23
MB–Difference –1.62 + 3.26 + 0.74
MB–%Increase –2.11 + 3.21 + 0.87
LC–Avg. 155.31 107.28 202.68 167.08 178.88 184.75
LC–Difference –48.04 –35.60 + 5.86
LC–%Increase –30.93 –17.56 + 3.28
LTK–Avg. 173.82 64.38 241.57 139.04 214.40 227.39
LTK–Difference –109.44 –102.52 + 12.99
LTK–%Increase –62.96 –42.44 + 6.06
LPP–Avg. 67.66 79.27 97.30 141.26 176.11 156.75
LPP–Difference + 11.61 + 43.96 –19.36
LPP–%Increase + 17.16 + 45.19 –10.99
LLCK–Avg. 14.29 15.61 19.45 22.80 62.34 9.71
LLCK–Difference + 1.32 + 3.35 –52.63
LLCK–%Increase + 9.23 + 17.23 –84.43
Remark: a/Ending storage data at the end of wet season evaluated on the 31th October.
b/Scenario setting is determined in Table 1
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water demand, highlight the necessarily to adjust the annual 
water allocation plans for MB and LPP dams by + 68.60 
and + 95.07 MCM/yr, respectively to better reflect current 
reservoir management in UMRB. Importantly, the results of 
Scenario 2 using EGIR as targeted demand, emphasize the 
importance of controlling the proper size of crop planting 
areas to balance water availability and demand for the long–
term sustainable use of water in the region.
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