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Abstract

This study demonstrates application of Deep Deterministic Policy Gradient (DDPG)-based algorithm to provide compre-
hensive and flexible plans for reservoir operation planning of the multiple reservoir system in the Chao Phraya River Basin
(CPYRB), Thailand aiming to mitigate flood and drought risks in the region. The multi-agent-based Deep Reinforcement
Learning (DRL) model is accordingly constructed considering 7-D predicted inflow, reservoir water released from adjacent
reservoir, downstream flow condition, and changes in reservoir water storage, as state variables. The desired goal is to increase
water storage levels in all reservoirs by 10—-15% to ensure higher potential in supplying water for crop cultivation over the dry
seasons and preventing flood occurrences during wet season. Simulation results from 2009 to 2022 indicate that DRL-DDPG-
based algorithm can perform well in solving sequential decision problems for optimal operation of multiple reservoir system
to achieve the desired water storage goal. It can offer realistic simulation results of seasonal and annual release schemes and
reservoir release ratios among reservoirs in the system compared to actual operation and Fmincon and ANFIS optimizations.
Importantly, DRL model demonstrates a significant advantage in view of increasing the long-term water storage levels in all
reservoirs as targeted in the modelling process while maintaining the similar and consistent release schemes in the reservoir
system. For the multipurpose multiple reservoir system operation, adjusting the dynamic desired goals within multi-agent-
based RL model is advisable to attain the specific desired outcomes and address various water scenarios.

Keywords Deep Reinforcement Learning (DRL) - Deep Deterministic Policy Gradient (DDPG) algorithm - Artificial
Intelligence (AI) - Reservoir operation planning - Chao Phraya River Basin
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Introduction

Reservoir operation planning is a crucial task in water
resources management involving the strategic determination
of the optimal release and water storage from reservoir sys-
tem to meet water demand sectors at all possible time steps.
It plays essential role in addressing reservoir management
strategy and establishing water allocation plans specifically
for flood and drought risk mitigation driven by considerable
change in climate variability. Reservoir operation planning
studies for both single and multiple reservoir systems are
primarily based on analyzing past reservoir data including
water inflow and water outflow, estimating current and future
water demand data, and modelling the reservoir operation
system using the modern computer-based technology. The
guidelines for releasing reservoir water incorporated with
the recommended release scheme and established water allo-
cation plan are expected to achieve as the intended goals of
reservoir operation planning task. As the conventional deci-
sion-making process for reservoir operation scheme relies on
the historical past data and traditionally uses predetermined
rule curve as guideline, this requires extensive calculations
particularly for large-scale multi-reservoir operation system
(Oliveira and Loucks 1997). Additionally, the results are
based on the subjective judgement by dam operators which
may not capture its reality well. Moreover, accounting for
non-linear relationships among relevant reservoir manage-
ment factors are hardly performed. Due to these limitations,
the superior techniques like Artificial Intelligence (AI) and
simulation-based optimization have been progressively
developed to enhance capabilities of learning, reasoning,
problem-solving, and decision making of the complex res-
ervoir operation system (Fayaed et al. 2013; Zhang et al.
2018; Seifollahi-Aghmiuni and Bozorg-Haddad 2019; Lai
et al. 2022).

In recent years, integration of Artificial Intelligence (AI)
technologies has driven a paradigm shift for reservoir opera-
tion and its adaptability (Yadav et al. 2023). Al is a field
of computer science focusing on the simulation of human
cognitive abilities by computer intelligent machine that are
programmed to think and act rationally like human to solve
complicated problems (Verma 2018). It is proven that Al is
a powerful toolset in optimizing current reservoir operations,
delivering improved decision-making competence, and allo-
cating water resources more effectively (Yadav et al. 2023).
In contrast to the physical-based models, Al-based mod-
els can acquire the various reservoir operation rules from
hydrological big data and real-time operation data (Zhang
et al. 2018). Al incorporates a broad range of techniques,
algorithms, and approaches such as Machine Learning
(ML), Reinforcement Learning (RL), Deep Reinforcement
Learning (DRL), Fuzzy Logic (FL), Evolutionary Algorithm
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(EA), Optimization Algorithm (OA), and Hybrid Models
(HM) (Yadav et al. 2023) which benefits for the specific
applications in reservoir management. Al can potentially
offer the improved decision-making capabilities in various
means such as enhanced data processing for hydrological
time-series prediction (Tounsi et al. 2022; Dastour and Has-
san 2023), augmented precision for flood prediction (Hu
et al. 2019), and adaptability for water resource management
(Belayneh et al. 2016).

Reinforcement Learning (RL) is a sub-field of Machine
Learning (ML), which is a branch of modern Artificial
Intelligent (AI). Its background of RL is primarily rooted
in Dynamic Programming (DP) and Markov Decision Pro-
cesses (MDPs) in solving sequential decision problems
(Wiering and van Otterlo 2012; Tabas 2020). Both DP and
MDPs have the similar mathematical foundation used to
describe the sequential decision-making problems (Wenwu
et al. 2018). MDPs have been basically used to address
most of the RL problems as it can model the environments
with a finite set of environmental states, actions, transition
probabilities and reward functions. RL has been progres-
sively developed to leverage the learning of dynamic system
behaviors by reward-driven trial and error process (Kael-
bling et al. 1996). In recent years, RL has been driven by
the Al research advancement in computer science which
has yielded transformative and paradigm-shifting technolo-
gies. It has been found that RL algorithms have been widely
applied in various fields including optimal operation of
reservoir systems (Castelletti et al. 2001, 2010; Mahootchi
et al. 2007; Madani and Hooshyar 2014; Dariane and Moradi
2016; Wenwu et al. 2018; Hu et al. 2022a, b). The key ben-
efits of RL focusing on the long-term goal and uncertain
environment have been proven through many applications
for reservoir management (Mahootchi et al. 2007; Wang
et al. 2020) and water resource system management (Hung
and Yang 2021). The superior performance of RL-based res-
ervoir operating policy has been proven to significantly out-
perform than those policy designed by human (Wang et al.
2020). In addition, RL has been applied for water resource
scheduling of multi-reservoir system which exhibits better
performance than traditional dynamic programming (Lee
and Labadie 2007). Importantly, RL technique enables to
adjust itself to learn the dynamic environment and create the
proper response and reactions to these changes effectively
(Mahootchi et al. 2007).

The core elements of RL model basically include: (1)
environment, which is the genuine physical system that the
agent works or simulated environment, (2) state, which is
current situation of the environment, (3) agent, which is the
system component that receive the states to take action, (4)
reward, which is the response of environment due to the
agent’s action, (5) policy, which is mapping procedure of the
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agent’s state to the action, and (6) value, which is the future
reward that the system agent would gain by taking the action
in a specific state.

As the goal of RL is to maximize the cumulative reward
over time, therefore, designing a proper reward function
is the most essential task for state—agent—action interac-
tion (Bhattacharya et al. 2003). Establishing RL model can
be started with defining the RL problem which includes
agent’s goal, state space, action space, and reward function.
Agent’s goal is what the agent needs to solve, so formulat-
ing explicit and measurable RL goal is definitely significant.
The set of possible situations that the agent can encoun-
ter is defined as state space. The action space is the set of
possible actions that agent can take. Determining the size
of state and action spaces are based on the characteristic
and relevant information of the system. The reward func-
tion defines the goal in the RL problems by mapping each
perceived state of the environment to an assigned number
called “reward”. It influences the behavior and learning of
RL model for successful or unsuccessful outcomes. Imple-
mentation of RL problem can be manipulated by selecting
RL learning algorithm which can be classified into two cat-
egories: (1) Value-based and (2) Policy-based. The value-
based RL learns a value function (Q-value) to guide a spe-
cific action for a next sequential state which the present and
expected future rewards are maximized. However, it can be
suitable and more efficient for some environments with small
state and action spaces (Andriotis and Papakonstantinou
2019). The policy-based RL directly learns to take action
by mapping states to actions into policy. It is regarded as
more adaptable for the environment system with continuous
action spaces (Nguyen et al. 2020). In the learning process
of RL, maximizing the collective rewards of the dynamic
environment system for taking a particular action in a given
state (Q-value) is intended to achieve by the value-based
and policy-based RL. Additionally, setting up appropriate
hyperparameters, such as learning rate, discount factor, and
exploration rate, is made in the RL implementation process.
Learning process of RL models can be implemented by
direct interaction between the agent and the states in envi-
ronment. The latest updated value functions of the states can
be used to update for each iteration. The agent selects the
best admissible action that provides the best value function.

Q-Learning or fitted Q-iteration, a classical value-based
RL algorithm, is widely used as learning method suitable
for an environment with small state-action spaces. It uses
tabular representation to collect the Q-value indicating
state—action relation. Since this decision table approach
of the classical RL cannot handle well with the large num-
ber of state—action combinations resulting in the curse of
dimensionality problem, Deep Q-Networks (DQNs) which
is the value-based Deep Reinforcement Learning (DRL)
algorithm, was developed to take the discrete actions (Xu

et al. 2021). To solve issues in continuous spaces and
high dimensional states and actions, DRL was initially
developed by combining the classical RL with deep neural
networks representation (Francois-Lavet et al. 2018; Xu
et al. 2021; Jiang et al. 2024). The enhanced learning capa-
bility of DRL in complex environments has been proven
and its application to various fields has been extensively
promoted (Mnih et al. 2015). DRL has been increasingly
applied for reservoir system management (Rieker and Lab-
adie 2012; Wang et al. 2020), optimal operation of mul-
tipurpose reservoir systems (Peacock and Labadie 2018),
optimal hydropower reservoir operation (Xu et al. 2020,
2021; Wu et al. 2024), water division optimization (Jiang
et al. 2024), and real-time control of stormwater systems
(Mullapudi et al. 2020). In addition, to advance the perfor-
mance of RL dealing with high-dimensional state spaces
and continuous actions, Deep Deterministic Policy Gradi-
ent (DDPG) which is a sort of DRL algorithm, is newly
developed for decision making process in the complicated
environment. It combines elements of the value-based and
policy-based RL in accordance with actor-critic networks
(Alturkistani and El-Affendi 2022). This allows DDPG to
learn both the value function and policy and take the opti-
mal actions in a large and complex environment. DDPG
has been proven in term of capability to successfully solve
the problems with large model parameters and non-linear
dynamics (Sumiea et al. 2023). Additionally, due to stabil-
ity and convergence properties of DDPG algorithm, it has
been applied in a broad range of challenging tasks includ-
ing robotics, simulation-based issues, energy management,
and reservoir operation decision and control (Tabas and
Samadi 2024).

In this study, DRL modelling-based design approach
focusing for multiple reservoir operation planning was
demonstrated and applied for the Chao Phraya River Basin
(CPYRB). Due to unbalancing between the water availabil-
ity and water demand in this region, the reservoir opera-
tion management and planning plays crucial role in driving
the water resources management policy for implementation
against flood and drought problems. CPYRB is the larg-
est basin in Central Thailand occupying drainage area of
approximately 160,000 km? or nearly 30% of the country
area. CPYRB has shifted from the uncontrolled basin to the
highly developed basin with multipurpose storage dams,
extensive canal infrastructures serving more than 10 mil-
lion rai (16,000 km?) of irrigated land (Kyaw et al. 2024),
and expansion of industrial and urban area since 2000s
(Molle 2002). There are four main storage dams in CPYRB:
Bhumibol (BB), Sirikit (SK), Khwae Noi Bunrung (KNB),
and Pasak Cholasite dams, which built across Ping, Nan,
Khwae Noi, and Pasak rivers, respectively as illustrated
the basin map in Fig. la and river schematic diagram in
Fig. 1b. Their reservoir capacities are 13,462, 9,510, 939,
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Fig.1 The Chao Phraya River Basin in the Central Thailand

and 960 million cubic meters (MCM). These dams supply
reservoir water for both local demand and joint demand in
the wide floodplain area along the Chao Phraya rivers. The
Chao Phraya (CPY) diversion dam is acted to re-regulate the
downstream flow released from BB, SK, and KNB before
distributing into canal irrigation system in the Greater Chao
Phraya Irrigation Scheme (GCPYIS) and downstream river
reach where PS dam joins. More than 70% of the water allo-
cated from main dams has been supplied for agricultural
purpose in GCPYIS. The remaining has been utilized for
non-agricultural water needs including municipal and indus-
trial uses, and ecological conservation along the tributar-
ies and main rivers as well as hydropower production. The
current reservoir operation from 2000 to 2022 in CPYRB
reveals that the average release portions of all dams are
0.3352:0.3391:0.1015:0.1643 for BB, SK, KNB, and PS
dams, respectively. However, these water allocation ratios
have been considerably altered corresponding to the water
availability and water demand situations within the basin.
Managing risks of flooding and drought events driven by
climate variability and economic development acceleration
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(b) River schematic diagram

in CPYRB have become critical priority in the context of
water resource management. In 2011, the worst flooding
triggered by the tropical monsoon storms was occurred
and sparsely spread in the northern, northeastern, and cen-
tral Thailand creating huge damages and economic losses
in CPYRB and neighboring basins. Since 2011, CPYRB
has frequently experienced a sudden increase in monsoon
flooding particularly at the end of wet season (Septem-
ber—October) which may continue into November in flood
prone area along the lower reach of Chao Phraya and Pasak
rivers. Moreover, CPYRB has suffered the consecutive and
prolonged droughts during dry season (November—April)
arising more frequently from 2016 to 2018. This highlights
the necessity of establishing suitable water allocation plan
along with generating proper reservoir release scheme to
effectively handle flood and drought risks for both short-
term and long-term operations in this region. Consequently,
this study aims to investigate the capability of Deep Rein-
forcement Learning (DRL) for multiple reservoir operation
planning in CPYRB. A multi-agent system for multiple
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reservoir operation is implemented using the DRL-DDPG
algorithm to determine the water releases from all reservoirs
corresponding to the targeted water storage levels. Making
decision on the water release by multi-agent-based DRL
relies on keeping higher storage levels of all reservoirs up
to 10-15% above the long-term average as established to
ensure effective reservoir management planning and mitigate
flood and drought risks in this region.

Methods

Development of multiple reservoir operation
planning model by deep reinforcement learning

To develop the daily multiple reservoir operation model by
the multi-agent-based DRL for CPYRB, the operation of
each reservoir is represented as agent including: (1) Agent-
BB, (2) Agent-SK, (3) Agent-KNB, and (4) Agent-PS. The
determination of daily reservoir release of each dam is
defined as the agent’s action that receives the state variables
from the environment system. The state variables of Agent-
BB identified for this study consist of 7-day predicted inflow
(I,,,) (Kraisangka et al. 2022), observed reservoir release of
SK dam at time t (R,4,,.sk,), key downstream flow condi-
tion at C.2 station at time t (Q ,,), change in water storage
at time t (AS,) and derivative of the change in water storage
with respect to time t (dAS/df). As the water storage levels
of all dams in CPYRB are aimed to increase by 10-15%
compared to the long-term average to moderate water scar-
city during dry season, therefore, the targeted water storage
levels of four main agents are accordingly generated. To
achieve this, two key state variables; AS, and dAS/dt are also
incorporated into the reservoir operation planning model by
DRL. The change in storage (AS,) is subtraction term of the
targeted water storage volume (S,,,,,) and the water storage
volume generated by DRL model (S,).

Similarly, the state variables of Agent-SK are 7-day pre-
dicted inflow (/,, ;), observed reservoir release of BB dam at
time t (R ;4,..5p,)> key downstream flow condition at C.2 sta-
tion at time t (Q,,), change in water storage at time t (AS))
and derivative of the change in water storage with respect
to time t (dAS/dt). As the KNB dam which was built across
the Khwae Noi river, a major tributary of the Nan river,
supplies water to the central region downstream of SK dam,
therefore, defining the state variable of KNB-agent also
incorporates the observed reservoir water released from SK
dam (R,,.sk,)- In addition, 7-day predicted inflow (1, ,),
downstream flow condition at C.2 station at time t (Q ),

change in water storage at time t (AS,) and derivative of
the change in water storage with respect to time t (dAS/
dr) are determined as key state variables for Agent-KNB to
potentially satisfy the joint water demand for CPYRB. The
key gauged flow at C.13 station at time t (Q;3,) located
downstream of the Chao Phraya diversion dam is considered
as the major state variable of Agent-PS together with 7-day
predicted inflow (/,, ;), change in water storage at time t (AS,)
and derivative of the change in water storage with respect to
time t (dAS/dt) as illustrated in Fig. 2a and b.

Identifying the state variables of all agents refers to the
physically-connected reservoir system and joint operation
among all reservoirs in CPYRB, together with upstream
and downstream influencing factors on reservoir operation.
The anticipated inflow data at 7-day lead time and current
and desired reservoir storage status of each single reservoir
is considered as one of the important factors to make res-
ervoir operation response corresponding to the changing
water conditions. Furthermore, the downstream flow condi-
tions at key selected stations (C.2 and C.13) and the release
schemes of adjacent reservoirs impact the release decision
and response for a reservoir to aid multiple reservoir opera-
tion and jointly serve the downstream demand in the lower
basin. Additionally, considering initial downstream flow
conditions at these key stations can prevent simultaneous
dam releases from different tributaries of CPY river that
may coincide and potentially lead to severe flooding in the
downstream economical areas. In other words, downstream
flow conditions are determined as state variable in the DRL
model to identify the potential flood risks and constraints.

In the decision-making process, the agent (representing
reservoir operation system of each dam) utilizes DRL to
take an action (representing water release from each res-
ervoir) through the process of trial and error driven by the
assigned rewards. Each action of determining the amount
of released water is referred to an “episode” which con-
sists of numerous simulation iterations. Deep Deterministic
Policy Gradient (DDPG) which is a reinforcement learning
algorithm, is used for multiple reservoir operation model-
ling in CPYRB. DDPG employs an actor-critic approach
combining value-based (Q-value) and policy-based (policy
gradient) techniques that can implement large state spaces
in the environment to take indiscrete action. In DDPG algo-
rithm, the agent takes the action corresponding to the maxi-
mum Q-value from the current state. The Q-value signifies
the expected future reward for taking a certain action in a
given state. In other words, by doing this, the agent aims to
maximize its expected future reward. To learn from the past
experience and improve future decisions, each action made
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by the agent is recorded as behavior in an Artificial Neu-
ral Network (ANN) structure. The action with the highest
Q-value is selected and the policy gradient in the ANNS is
accordingly adjusted as shown in Fig. 2c.

The modelling process by DRL-DDPG begins with the
actor, a component of agent, receiving a state value and
sending an action to the environment. Subsequently, the
environment sends a reward and a state value to the critic
neural network to update the Q-value. The critic neural net-
work then sends the Q-value back to the actor neural net-
work for gradient adjustment. In the other words, the critic
neural network acts as a guideline, advising the actor neural
network on which action will yield the highest Q-value.

In this study, the reward function is termed as a function
of water storage maintaining to reach the established target
levels and satisfaction of releasing reservoir water to meet
the water demand for each dam. Consequently, calculating
the rewards is subject to two conditions as expressed in the
following equations.
> 02%8!

i i i _
|SL S(argen targett -n= 10+

Si—Si

targett

5

ey
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where Ri, is the reservoir release (outflow) of reservoir 1 at
time step t (or DRL release), S', and Si,a,get, are the reser-
voir water storage and targeted water storage of reservoir
i at time step t, respectively, and D', the reservoir water
demand of reservoir i at time step t, including both local
and joint water demands. In this study, the local and joint
water demands in the basin are calculated considering both
agricultural and non-agriculture requirements and encom-
passed into the DRL-based reservoir operation model. The
calculation of local water demand for each of four main
storage dams are based on the agricultural water need for
small-scale irrigation scheme, and non-agricultural water
demand including municipal, industrial, and ecological
needs to represent its local demand supplied by the adja-
cent dam and incorporate environmental challenges in each
CPY tributaries. For joint water demand, agricultural water
requirement over the planting seasons in GCPYIS which
is the largest irrigation scheme in the central region, is

Table 1 Targeted water storages of all dams specified for multiple reservoir operating planning

Dam BB SK KNB PS
Month
Avg. storage Targeted stor-  Avg. storage Targeted stor- Avg. storage Targeted stor-  Avg. storage Targeted storage
age age age

Unit -  MCM MCM MCM MCM MCM MCM MCM MCM

Jan DS 9,043 10,493 6,820 7,819 548 683 661 757

Feb 8,534 9,983 6,350 7,349 451 586 539 635

Mar 7,865 9,314 5,786 6,785 362 498 419 514

Apr 7,177 8,627 5,206 6,205 287 422 308 404

May WS 6,681 8,130 4,753 5,752 239 375 235 331

Jun 6,517 7,966 4,591 5,590 223 358 204 300

Jul 6,412 7,862 4,714 5,713 226 362 182 278

Aug 6,677 8,126 5,491 6,490 326 462 193 288

Sep 7,618 9,067 6,567 7,566 525 660 429 525

Oct 8,828 10,277 7,183 8,182 706 842 808 904

Nov DS 9,361 10,810 7,245 8,244 738 873 843 939

Dec 9,342 10,791 7,052 8,051 684 820 776 871

Initial Water Stor- +1,449 +999 +136 +96
age Increased in (+15%) (+15%) (+15%) (+10%)
wsY

Initial Water Stor- + 1,450 +999 +135 +96
age Increased in (+15%) (+15%) (+15%) (+10%)
DS

MPL 3,800 2,850 43 3

NPL 13,462 9,510 939 960

YThe difference between the targeted and average water storage levels of each dam in April

Z'The difference between the targeted and average water storage levels of each dam in October
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accordingly estimated. Estimating municipal and industrial
water demand in the lower CPYRB, and ecological needs
along downstream reach of CPYR to prevent seawater intru-
sion is also conducted to account for all water demand sec-
tors. Since supplying water to joint demand in CPYRB is
proportionally shared by four dams in the basin, therefore,
the average release portions of 0.3352:0.3391:0.1015:0.1643
for BB:SK:KNB:PS dams, are accordingly used to deter-
mine the individual water demand.

To maintain the targeted storage levels of all agents in the

Si— S

t targett
given for each step of agent’s action when the difference in
DRL water storages and targeted storage level of reservoir i is

reater than 20% of targeted storage levels or
fS' - S | > 0.2 * Sfargen . In contrast, the positive reward,
100/|R! — D! is given for each step of agent’s action when the
DRL water storage and targeted level of reservoir i is in a range
of less than 20% of targeted storage levels or
|1 = S| < 0258

targett targett”

reservoir system, the negative reward, —10 * is

i
t targett

It is noticeable that when the storage difference term or

’S; = S prgen |18 large (> 0.2%8',01)- the considerable negative

reward (< <— 10) is given to the DRL model by multiplying
the storage difference term with —10. In other words, a large
discrepancy of DRL and targeted water storage levels yields a
considerable negative penalty reward for the DRL model.

S; - Siargell
(< 0.2*Simrgen) indicating that the DRL model can achieve well
with the targeted storage levels, the significant positive reward
is given to the DRL model as an inverse function of water defi-
cit term, |R! — Df| by dividing 100 with water deficit term. A
maximum positive reward of + 100 is given to the model when
there is no water deficit.

When the storage difference term or is small

DRL-DDPG Algorithm:

The computational process of DRL-DDPG formulated in
this study is presented in the following;

DRL-DDPG Algorithm:

us/e')

Initialize replay buffer R
for episode = 1, M do

Receive initial observation state s;
for t=1, T'do

Store transition (s, a, 74, S+7) in R

Sety, = r; + 90 (51, (514110067

Update the target networkls:
69 —162+(1-1)0%"
¢ — +(1-1)0"
end for
end for

Initialize a neural network with random weight; ¢ in critic network Q(S, a /69 ) and ' in actor network

Initialize target network 6 and ' with weight 62 —6%,0" —¢"
Initialize a random process N for action exploration

Select action a, = u(s|6") + N, according to the current policy and exploration noise
Execute action @, and observe reward r;, and observe new state s, ;

Randomly sample a minibatch of N transitions of N transition (s, a;, r,, 5,+;) from R

2
Update critic value by minimizing the loss: L = é 2 (yl.—Q(s,-,ai|6Q))
Update the actor policy using the sample policy gradient:

! 0
WJ:NZ l7aQ(s,a|H )|S:s[,a:y(s[) Voltﬂ(g|9'l)|5i

Where s, and s, ;: state at time t and time t+1(new state) in which seS where S is a finite set containing all possible states.
a,: action at time t in which ac A where A is a finite set containing all possible actions. 7,: reward at time t due to the action
a, and state s;. y: reward discount factor to control the importance of future reward ranging between 0—1. 7 changing rate
for target network weight. R: experience replay memory. J: policy score function to calculate the expected reward of policy.
N: exploration noise. 7: number of time steps. M: number of episodes. L: loss function to quantify discrepancy between the
agent's predicted values and the actual values. €, o, V, and y: weighted value, learning rate, gradient value, and target value
of neural network, respectively. Q or O(s, a): Q—function (DQN) which is reward summation in the present and future
times. Q[s, a/ﬁ ) (s, a) estimated by neural network 6. Qvor Q'(s, a): target Q—function. u or u(s): deterministic policy
function. z'or 4'(s): target deterministic policy function.
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The multiple reservoir operation system in CPYRB is
primarily governed by the principle of mass balance as
expressed in the following equation;

Si

t+1

=S+ I'-R—E-Spill;¥i = 1,... ,N, &t = 1,..., T
3
where S, and S',, ; are the reservoir water storages of reser-
voir i at time step t and t+ 1, respectively, I, is the reservoir
inflow of reservoir i at time step t, Ri, is the release of res-
ervoir i at time step t achieved by DRL-DDPG algorithm,
E' is the evaporation losses of reservoir i at time step t,
and Spill’, is the spilled water from the reservoir i at time
step t. The decision on the DRL release of each reservoir is
constrained by the minimum release, R’ ;, and maximum
release, R, to ensure the minimum environmental flow
requirement and maximum safe channel capacity of each
dam. In addition, the available water storages after releasing
reservoir water by DRL model should lie between minimum
water storage, S, and maximum water storage, S’ of
each reservoir.
R . <R <R 4)

min — max

So<S<S 5)

min — max

Setting up the targeted reservoir water storage
for reservoir operation planning

The reservoir operation planning is served as the funda-
mental undertaking for the strategic reservoir management
to achieve the specific purpose. This enables the reser-
voir planners to better understand and establish strategic
operation policy for sustainable water security. The main
objective of this study is to demonstrate the deep rein-
forcement learning technique to recommend the release
scheme for multiple reservoir operation planning task.
Consequently, the increased levels of targeted storages of
four main dams in CPYRB by 10-15% compared to the
long-term average, is generated as expressed in Table 1
and Fig. 3. This leads to the enhanced potential to inten-
sively supply water not only for irrigation over the crop
cultivation periods but also the downstream water needs.
However, to protect dams from downstream flooding as
a result of reservoir operation, the percentage increase
of water storage levels in the reservoir system is deter-
mined lying between the Normal Pool Level (NPL) and
Minimum Pool Level (MPL) of each reservoir. Accord-
ing to the increased water storages in reservoirs during
dry season (Nov.—Apr.), the extra amount of water stor-
age of + 1,450, 4999, 4+ 135, and + 96 MCM for BB, SK,
KNB, and PS dams can be increased in October before
the subsequent crop planting season begins. Similarly,

during wet season (May.—Oct.), the additional water stor-
ages in May of + 1,499, 4999, + 136, and + 96 MCM for
these dams can be enhanced to meet agricultural and non-
agricultural water demands throughout the wet season. Not
only the increased water storage in all dams is utilized
for the downstream water conservation purpose over the
crop cultivation periods, but also it is beneficial for hydro-
power production. Based on this, optimal daily reservoir
release scheme from 1/11/2009 to 31/12/2022 is accord-
ingly accomplished using DRL approach.

Evaluating the effectiveness of DRL model
in reservoir management for CP’YRB

The daily long-term simulation from 1/11/2009 to
31/12/2022 was conducted using the DRL-DDPG-based
operation model for CPYRB. The simulated reservoir water
storages, reservoir releases, and release ratios of four main
dams; BB, SK, KNB, and PS, were accordingly evaluated to
explore the short-term and long-term operational capabilities
of the DRL model in comparison to actual operation. In the
last step, the comparative analysis of the DRL model against
two optimization approaches previously studied for reser-
voir management in CPYRB focusing on BB and SK dams
was benchmarked; (1) non-linear optimization programming
using Fmincon function (Kyaw et al. 2022) and (2) Adaptive
Neuro Fuzzy Inference System (ANFIS) (Kyaw et al. 2024).

Result and discussion

The simulated reservoir operation accomplished
by DRL model for CPYRB

The followings are the daily simulated reservoir operations
from 1/11/2009 to 31/12/2022 for BB, SK, KNB, and PS
dams under the alternative reservoir operation schemes
generated by the DRL model. The water storage levels sim-
ulated by DRL model are compared to both the targeted
and observed water storage levels as shown in Fig. 4. It is
revealed that DRL model recommends to release the optimal
volume of water from all reservoirs to reach the increased
water storage levels as determined as a desired goal. This
substantially results in lowering the considerable fluctua-
tions of water storage levels in all reservoirs. The reservoir
releases at the current time step of all dams performed by
DRL-DDPG-based algorithm is accomplished by the refine-
ment process to get the maximum reward values which
learns from the current and next future time steps to find the
optimal action using actor-critic neural networks. Therefore,
the optimal daily releases to achieve the targeted water stor-
age levels, which will be used to establish the seasonal and
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Fig.3 Targeted water storage BB SK
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annual water allocation plans for CPYRB, are accordingly
generated.

Effectiveness of DRL model in reservoir
management for CP’YRB

As DRL model performs well to conform the targeted
water storage levels of all dams constructed as annual plan
for reservoir operation, the effectiveness of DRL model in
reservoir management for CPYRB is accordingly assessed.
The total amount of annual water releases performed
by DRL model from 2010 to 2022 are compared to the
observed annual releases as shown the results in Fig. 5.

@ Springer

Avg. Water Storage

- Targeted Water Storage

In addition, the water release ratio among reservoirs in
the CPYRB system are also calculated and presented. It is
found that DRL generates the different annual release pat-
terns according to the various water circumstances com-
pared to the observed releases. In wet year of 2011, DRL
model recommends releasing larger volume of released
water from all dams to deplete reservoir storage levels and
keep as the targeted water storages. As a result, critical
flood risks for the subsequent time periods in 2012 can be
certainly moderated. In critical dry years of 2014, 2015,
2019, and 2020, the total annual releases implemented by
DRL model are likely to be the lowest compared to those
in wet and normal years. However, adjusting the dynamic
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Fig.4 Comparison of reservoir
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targeted water storage levels to suit to water supply and
water demand conditions in the reservoir system is highly
recommended to reduce flood and drought risks.

The simulated results over the period 2010-2022 also
indicate that average values of annual release achieved
by DRL model are slightly higher than those observed
releases by +2.93% and +0.16% for BB and KNB dams
while slightly lower by — 2.91% and — 9.51% for SK and
PS dams, respectively. While DRL model determines reser-
voir releases annually based on targeted water storage levels
and state variables in the environment system, the average
total release across all dams in CPYRB closely aligns with
observed release. Consequently, small percentage difference
of — 1.71% is found as indicated in Table 2.

Based on the seasonal analysis of reservoir release, it is
found that during crop cultivation periods in dry season,
DRL model recommends increasing additional water release
of PS dam by +46.01% while lowering reservoir water from
BB, SK, and KNB by — 31.75%, — 16.91%, and — 17.92%,

Oct-13 Oct-15 Oct-17 Oct-19 Oct-21

Observed Water Storage

respectively. In contrast, DRL model achieves targeted water
storage levels by suggesting to increase the water releases
during crop cultivation periods in wet season from BB,
SK, and KNB dams by +66.28%, + 16.86%, and + 14.84%,
respectively and lowering the release water from PS dams
by — 34.27%.

Corresponding to the simulated results of reservoir opera-
tion aiming to keep the increased levels of water storages of
all reservoirs up to 10-15% of the average, the release ratios
of all reservoirs are considerably assessed and compared to
the actual operation in the multiple reservoir system. Table 3
and Fig. 6 presents the reservoir release ratios in dry years,
normal years, and wet years for short-term multiple opera-
tion, as well as the reservoir release ratios for long-term mul-
tiple operation which are obtained from the multiple reser-
voir operation planning model accomplished by DRL model.
It is illustrated that DRL model suggests adjusting reservoir
water allocation schemes among reservoirs in the system
for both short-term and long-term operations to increase
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Fig.5 Comparison of reservoir releases achieved by DRL model and observed releases

the water availability in all reservoirs. During dry years,
DRL model proposes increasing higher release ratios for
SK and KNB dams and slightly lower ratios for BB and PS
dams to moderate drought risk. DRL model suggests raising
the reservoir release from BB, SK, and KNB dams during
normal years. Additionally, higher release from BB dam is
recommended to mitigate flood risk during wet years. These
results signify the benefit of DRL modeling for a typically
successive reservoir operation planning task in establishing
the annual water allocation plan based on specific storage
level targets identified as an example in this study. However,
in the operational practice, these targeted levels of water
storages in the multiple reservoir system of CPYRB can be
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dynamically adjusted by policy makers to suit with the water
circumstances and perspectives on achieving a sustainable
reservoir management of reservoir system.

Comparative analysis of DRL model with other
optimization approaches in reservoir management
for CPYRB

To explore capability of proposed DRL-DDPG based opera-
tion model for multiple reservoir operation planning, the
comparative analysis comparing the simulated results of the
DRL model for BB and SK dams with other state-of-the-
art reservoir operation optimization techniques previously
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Table 2 Summary of average reservoir releases of all dams simulated from 2010 to 2022

Dam  Annual

Dry season (Nov.—Apr.)

Wet season (May.—Oct.)

DRL release’  OBS release” ADIFFY DRL release”’ OBS release” ADIFFY  DRLrelease”’  OBS release’  ADIFFY
Unit MCM MCM % MCM MCM % MCM MCM %
BB 4318 4,195 +2.93% 1,850 2,711 -31.75% 2,657 1,598 +66.28%
SK 4,744 4,886 -291% 2,374 2,857 -1691% 2,553 2,184 +16.86%
KNB 1,292 1,290 +0.16% 475 578 -17.92% 880 766 +14.84%
PS 1,864 2,060 -9.51% 928 635 +46.01% 1,009 1,534 —34.27%
Total 12,218 12,431 -171% 5,627 6,782 -17.03% 7,098 6,083 +16.69%

Y Evaluated using the data from 1/1/2010 to 31/12/2022
YEvaluated using the data from 1/11/2009 to 31/12/2022
3 ADIFF-Percentage difference, OBS—Observed data

studied in CPYRB, was also conducted. Two main tech-
niques are non-linear optimization programming (Kyaw
et al. 2022) and Adaptive Neuro Fuzzy Inference System
(ANFIS) applied for reservoir optimization in CPYRB
(Kyaw et al. 2024). The optimization-based solution tech-
nique using non-linear programming solver (Fmincon func-
tion) was developed for BB and SK reservoir operation sys-
tem aiming to address water scarcity in the region while
flooding conditions due to the dam releases was constrained.
Consequently, setting up the objective function for multi-
reservoir operation model was referred to the minimization
of the water scarcity indicating inability to satisfy the joint
water demand in CPYRB. The hybrid neuro-fuzzy-based
reservoir operation model for BB and SK dams was also

developed by aiming to aid the reservoir operation system
in alleviating water scarcity and moderating floods by opti-
mizing operational rules using ANFIS technique. To for-
mulate the ANFIS model structures, three main variables,
namely reservoir inflow, reservoir water storage, and tar-
geted water demand, were determined as input variables and
current dam release was specified as the output variable. The
model was trained and tested using 80% and 20% of dataset,
respectively, by doing this, the optimal reservoir operational
releases of BB and SK dams were solved and presented.
As the local and joint water demand data, reservoir data,
and reservoir system constraints used in these two previ-
ous studies are consistent with this study, consequently, a
comparative analysis in reservoir management for CPYRB

Table 3 Reservoir release ratio Operation

Avg. release ratio  DRL OBS

accomplished by DRL model
for short-term and long-term
operations

Short-term: DYV

BB:SK:KNB:PS

0.3273:0.5165:0.0903:0.0659  0.3554:0.4908:0.0820: 0.0718

Short-term: NYV BB:SK:KNB:PS 0.3268:0.3754:0.1167:0.1812  0.3106:0.3602:0.1157:0.2135
Short-term: WYV BB:SK:KNB:PS 0.3894:0.3778:0.0927:0.1402  0.3116:0.3858:0.1191:0.1835
Long-term: LT" BB:SK:KNB:PS 0.3280:0.4163:0.1030:0.1528  0.3352:0.3991:0.1015:0.1643

I DY-Dry Year, NY-Normal Year, WY-Wet Year, LT-Long-term Operation from 2010 to 2022
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Fig.6 Reservoir release ratio accomplished by DRL model. (Note: DY—dry year, NY-normal year, WY—wet year, LT-long-term operation,

OBS-observed data)
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could be conducted to compare the relative performances
of these models. The comparison of simulated annual res-
ervoir releases for BB and SK dams from 2010 to 2022,
accomplished by the DRL, Fmincon, and ANFIS, models
is shown in Fig. 7. These long-term simulations incorporate
the impact of climate variability, including the severe flood
of 2011 and consecutive prolonged droughts from 2016 to
2018.

Compared to actual operation and Fmincon and
ANFIS optimization models, it is illustrated that DRL
model generated the similar annual release patterns of
two main storge dams with potentially different release
volumes across various water conditions. The statistical
correlations between the DRL model and actual opera-
tion, Fmincon, and ANFIS optimizations were 0.6744,
0.7525, and 0.6690, respectively. During the consecutive
critical drought years apparently occurred from 2016
to 2018, the DRL model recommended to increase the
release volume supplied from BB and SK dams signifi-
cantly to moderate water scarcity in the basin. During
the severe flood year in 2011, the DRL model attempted
to deplete the reservoir water storage to align with the
targeted storage lines resulting in substantially larger
releases from these two dams compared to actual opera-
tion and two optimization models. Consequently, the
smaller releases accomplished by DRL model was found
in subsequent year, 2012 due to lower flood risks. How-
ever, the average long-term releases of BB and SK dams
performed by DRL models are slightly different compared
to actual operation, Fmincon, and ANFIS optimization
techniques. It is estimated that the percentage difference
in reservoir releases of DRL, Fmincon, and ANFIS are
- 4.19%,+2.58%, + 2.15%, respectively in comparison
with the actual operation. Importantly, the DRL model
demonstrated a significant advantage over these two
optimization models in view of increasing the long-term
water storages lying approximately + 15% for BB and SK
dams as targeted in the DRL modelling process. Whereas,

Fig.7 Comparison of total
reservoir releases of BB and SK
dams accomplished by DRL—
Fmincon—-ANFIS models
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the Fmincon and ANFIS models could only increase water
storages by + 12.48% (BB) and + 5.23% (SK) (Kyaw et al.
2022) and +6.94% (BB) and + 1.62% (SK) (Kyaw et al.
2024), respectively. While the developed DRL model
inherently incorporated release and storage constraints
to regulate downstream flooding and maintain reservoir
levels within safe limits, the continuous larger releases
from two main storage dams particularly in 2011 led to
the higher operational flood risk and damage compared
to the other two optimization techniques. To address this
limitation, it is advisable to include flood control infor-
mation into the reward penalty function to improve the
DRL model’s capability.

DRL-DDPG hyperparameter tuning

For DRL-DDPG hyperparameter tuning, this study
adopted a trial-and-error process and employed the opti-
mal values obtained from recent research work (Tabas and
Samadi 2024) as guideline to fine-tune optimal hyperpa-
rameter values as summarized in Table 4. It is emphasized
that the reward discount factor (y) of 0.90 is a substantial
hyperparameter of DRL model that significantly controls
the future rewards implication in the learning process
of the model’s agent. Additionally, a fine-tune value of
changing rate for target network weight (z) of 1x 1073
can help improve the stability of the training process to
characterize the dynamic behaviors of reservoir operation
system and targeted storage levels. The exploration noise
(N) is specified to 0.30 encouraging agents to explore a
broad range of release actions. The critic and actor learn-
ing rates (a) are set to 1 x 102 and 1 x 107>, respectively
that influences the speed of learning process of model’s
agent. In this study, the initial weighted values () are
randomly initialized and updated using gradient value (V)
to guide the learning process of direction improvement.
It is found that a key advantage of DRL-DDPG based

Total Reservoir Releases of BB and SK Dams in CPYRB

OBS Release

® Fmincon Release

m DRL Release
B ANFIS Release

2013 2014 2015 2016 2017 2018 2019 2020
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operation model is its capability to significantly shorten
computational time allowing to generate reservoir release
schemes with a limited number of episode simulations.
However, the speed and competence of the agent’s con-
vergence to that desired goal is significantly subject to
assigned reward function.

Conclusions

The challenge in optimal operation of multiple reservoir sys-
tem involves making complicated decisions on time-varying
state variables like available water storage, future reservoir
inflows, water demand requirements, existing release scheme
of adjacent dam in the system, and downstream flow con-
ditions. Consequently, establishing robust water allocation
plan to ensure the efficient and sustainable system operation
and mitigate flood and drought risks is definitely important
for reservoir operation planning task. This study demon-
strates application of DRL-DDPG-based algorithm to pro-
vide comprehensive and flexible plans for reservoir opera-
tion planning of the multiple reservoir system in CPYRB.
The multi-agent-based DRL model is constructed consider-
ing 7-D predicted inflow, reservoir water released from adja-
cent reservoirs, downstream flow conditions, and changes
in water storage, as state variables. The goal of multiple
reservoir system operation is set by increasing 10-15% of
water storage levels to all reservoirs in CPYRB and ensuring
higher potential in supplying water for crop cultivation over
the dry seasons. At the same time, these increased storage
lines are determined not exceeding the normal pool levels
to avoid flooding occurrences. In other words, the reservoir
operators are assumed to set operational targeted goal to
allow DRL-DDPG-based algorithm help recommend the
proper seasonal and annual release schemes. Simulation
results indicate that DRL-DDPG-based algorithm can per-
form well in solving sequential decision problems for opti-
mal operation of multiple reservoir system to achieve the
desired goal in CPYRB. It can provide reasonable and realis-
tic simulated results in terms of seasonal and annual release
schemes and reservoir release ratios among reservoirs in the
system in comparison to observed operation and Fmincon
and ANFIS optimization techniques. Importantly, it can

shorten computational time significantly to gain reservoir
release schemes with small number of episode simulation.
However, the speed and competence of the agent’s conver-
gence to that desired goal is significantly subject to reward
function design. For model utilization, reservoir planners
can simply adjust targeted storage levels for each dam in
the DRL model to meet desired goals in the multiple reser-
voir system by considering current and future water supply
and demand conditions. The trade-off between flood control
and drought mitigation measures to set up the optimal lev-
els of targeted reservoir storages is definitely recommended
to ensure the successful DRL-based reservoir operation.
By considering this, the model enables the establishment
of comprehensive and flexible water allocation plans and
release guideline trajectory for sustainable reservoir opera-
tion planning in CPYRB.

Recommendation

The design of reward function is one of the critical aspects
of DRL applications for optimal operation of reservoir sys-
tems. To fully capture the complex dynamics and trade-
offs in reservoir operation, it is recommended to explicitly
incorporate water deficit and flood control measures, and
other relevant factors such as impact of reservoir releases
on downstream ecosystems, cost of water supply, long-term
sustainability of water resources, and intended hydropower
production, etc. into the reward function for the achievement
of specific objectives of reservoir optimization. In addition,
to balance exploration and exploitation of the DRL model’s
agent exploring the new actions and reducing the undesired
actions for determining reservoir releases, the magnitude of
the penalty reward should be specified carefully. Moreover,
this study utilizes long-term historical data from 2010 to
2022 for DRL-based simulation to incorporate the impact
of climate variability like the severe flood of 2011 and pro-
longed droughts from 2016 to 2018. However, conducting
scenario-based simulations to reflect the future climate
variability and water demand conditions are needed for the
further investigation of model’s ability to adapt to changing
circumstances. Furthermore, adjusting the dynamic targeted

Table 4 Optimal values of DRL-DDPG hyperparameters identified based on a trial-and-error process

Agent Reward dis- Changing rate for target Exploration  Buffer size Critic learning rate Actor learning rate Batch size
count factor, y  network weight, t noise, N

BB 0.90 1x1073 0.30 1x10° 1x1072 1x107 64

SK 0.90 1x1073 0.30 1x10° 1x1072 1x107 64

KNB 0.90 1x1073 0.30 1x10° 1x1072 1x107 64

PS 0.90 1x107 0.30 1x10° 1x1072 1x107° 64

@ Springer



102 Page 16 of 17

Modeling Earth Systems and Environment (2025) 11:102

levels of water storages in the multiple reservoir system of
CPYRB is strongly recommended to suit with the water cir-
cumstances and perspectives on achieving a sustainable res-
ervoir management and flood and drought risks mitigation.
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