Sensitivity of Irrigation Structures

An alternative way of looking at fluctuations in irrigation systems without having to consider the difficulty of unsteady flow.

- ...helps answering the following questions:
- HOW the system is affected by fluctuations?
- HOW the system generate fluctuations?
- HOW MUCH performance is affected by sensitivity?
- WHAT more cost-effective operational procedures ?
- WHERE collect information?

Sensitivity of irrigation structures (

an alternative way of looking at fluctuations in irrigation systems without having to consider the difficulty of unsteady flow.

Offtake Structure sensitivity

The discharge sensitivity to water depth at any structure is defined as the ratio of the relative variation of discharge through the structure $(\Delta q/q)$ and water depth deviation (ΔH) upstream of the structure.

$$S_{offtake} = \frac{\Delta q/q}{\Delta H} \quad (unit: m^{-1})$$

Assoc.Prof.Dr.Varawoot Vudhivanich

Use of sensitivity

1. Estimate the reaction of an offtake when water depth in the parent canal varies (Δ H)

$$\Delta q/q = S_{Offtake} \cdot \Delta H$$

Relative variation in discharge for various values of sensitivity

	Sensitivity Indicator (S _{Offtake})						
Water level variation in the parent	Low	Medium	High				
canal (DH)	0.5 m ⁻¹	1 m ⁻¹	2 m ⁻¹				
+/- 0.05 m	2.5 %	5%	10%				
+/- 0.10 m	5%	10%	20%				
+/- 0.20 m	10%	20%	40%				
			x Z d				

Sensitivity from hydraulic formula

$$q = M(head)^{\alpha} \Delta q/q = \alpha \frac{\Delta head}{head}$$

$$\int_{offtake} \frac{\Delta q}{q} = \frac{\alpha}{head} \frac{\Delta q}{head}$$
Orifice flow: $Q = CA\sqrt{2gH}$ Weir flow: $Q = CLH^{1.5}$

Use of sensitivity

2. Estimating tolerance on water control -setting water level control requirements for appropriate service delivery.

Overview of offtake sensitivity indicators

Assoc.Prof.Dr.Varawoot Vudhivanich

KU. April 2013

Regulator sensitivity

The water depth sensitivity along the canal, at a regulator or at any other section, is expressed as the variation of water depth resulting from a relative discharge variation

Input and output for a cross-regulator

Water-level variation for various values of sensitivity and discharge perturbations

	Sensitivit	y indicato	r (S _{Regulator})
Relative variation in canal discharge	0.5 Low	1	2 High
		(m)	
+/-0.05 (or 5%)	0.025	0.05	0.10
+/-0.10 (or 10%)	0.05	0.10	0.20
+/-0.20 (or 20%)	0.10	0.20	0.40

 $\Delta \mathbf{H} = S_{\text{Regulator}} \cdot$

Hydraulic computation:

$s \approx \frac{\alpha}{\alpha}$	s ~ ^{Head}	d
$S_{Offtake} \sim$ Head	$S_{\text{Regulator}} \sim \alpha$	

Direct measurements: initiate a variation of input measure the resulting deviation of outputs

Assoc.Prof.Dr.Varawoot Vudhivanich

MASSCOT

Sensitivity of cross-regulators along the SMIS, Nepal

S offtake S cross-regulator

Variations in discharge experienced by the offtakes along the SMIS main canal for a water level change of 0.1 m

CR	1	2	3	4	5	6	7	8	9	10	11
S offtake	0.6	2.0	0.8	1.6	1	4.3	3.4	0.35	0.5	0.7	1.5
						(%)					
Variation in discharge (+ or - initial setting value)	6	20	8	16	10	43	34	3.5	5	7	15

CR	1	2	3	4	5	6	7	8	9	10	11
S offtake	0.6	2.0	0.8	1.6	1	4.3	3.4	0.35	0.5	0.7	1.5
						(%)					
Variation in discharge (+ or - initial setting value)	6	20	8	16	10	43	34	3.5	5	7	15

Operational rules for tolerance and frequency of adjustment as a function of the sensitivity at the crossregulator along the SMIS main canal, Nepal

Cross-regulator	Features	Tolerance on water-level control	Frequency of adjustment of the CR		
CR1	S regulator high (2)	Tolerance 0.1 acceptable	More frequent adjustment		
	S offtake low				
CR2	S regulator low (0.4)	Reduced tolerance should be	Low frequency sufficient		
	S offtake high (2)	sought (±5 cm)			
CR3	S regulator very high (3)	Tolerance 0.1 acceptable	More frequent adjustment		
	S offtake low (0.8)				
CR4 & CR5	S regulator average (< 1.5)	Tolerance 0.1 acceptable	Average frequency adjustment		
	S offtake average (< 1.5)				
CR6 & CR7	S regulator low (< 1)	Reduced tolerance should be	Average frequency adjustment		
	S offtake high (>3.5)	sought (±5 cm or below)			
CR8-CR11	S regulator average or below	Tolerance 0.1 acceptable	Average frequency adjustment		
	S offtake average or below				

Flexibility indicator or Proportional indicator

Flexibility indicator (F) expresses the link between the relative variations in Q in the parent canal and the dependent canals.

$$F = \frac{\Delta q/q}{\Delta Q/Q} = \frac{\Delta q/q}{\Delta H} \frac{\Delta H}{\Delta Q/Q} = S_{offtake} S_{Regulator}$$

F=1	Proportional	Fluctuations are divided uniformly.
F<1	Underproportional	Fluctuations are diminished in offtaking canals
F>1	Hyperproportional	Fluctuations are exacerbated in the offtaking canals.

Assoc.Prof.Dr.Varawoot Vudhivanich

KU. April 2013