

Main objectives of irrigation

- Quality of services
 - Efficiency
 - Equity
 - Adequacy
 - Reliability
 - Flexibility
- Low cost operation
- Simplicity

KU. April 2013

Basic fundamental for canal control

- Flow control
- Water level control

Reasons for flow control

- Meeting crop water requirements
- Water savings
- Safety of operation

Offtakes as flow control

Reasons for water level control

- Command of service area
- Canal protection
- Canal safety
- Flow control at offtakes

Regulators as water level control

Assoc.Prof.Dr.Varawoot Vudhivanich

Department of Irrigation Engineering

KU April 2013

Methods of water level control

- Local control
- Remote localized control
- Remote centralized control

Disadvantages of upstream control

- Slow response to change in demand
- Water operational losses

Downstream control

Advantages

- Automatic distribution
- No operational losses
- Accurate and immediate response

Disadvantages

- ☐ Require additional canal embankment
- If Q at offtakes exceeding Q supply, headreach farmers will suffer.

KU. April 2013

Localized vs. Centralized control

Assoc.Prof.Dr.Varawoot Vudhivanich

SCADA

- Reduces communications and computer capacity
- Less susceptible to the consequences of communications system failure
- Improves operation
- Enhances safety
- Increases flexibility and responsiveness

COMPONENTS

- Master station
- Communications
- Programmable logic controllers (PLC) or Remote terminal Units (RTU)
- Sensors
- Actuators

SCADA levels of control

- Remote monitoring
- Remote manual control
- **Automatic control**
- Report to management

Department of Irrigation End

SCADA IS AN ATTRACTIVE SOLUTION FOR IMPROVING PERFORMANCE OF EXISTING SYSTEMS

CONTROL EQUIPMENT

Local Control

- Flow Division
- Water Level Control
- Flow and Water Level Control
- Flow Control at Offtakes

Remote and Centralized Control

CONTROL EQUIPMENT

Local Control

- **Flow Division**
- Water Level Control
- Flow and Water Level Control
- Flow Control at Offtakes

Remote and Centralized Control

KU, April 2013

CONTROL EQUIPMENT

Local Control

- **Flow Division**
- Water Level Control
- Flow and Water Level Control
- Flow Control at Offtakes

Remote and Centralized Control

CONTROL EQUIPMENT

Local Control

- **Flow Division**
- Water Level Control
- Flow and Water Level Control
 - Electrical Controllers
 - Automatic Hydraulic Devices
- Flow Control at Offtakes

Remote and Centralized Control

Local Control Flow Division Water Level Control Flow and Water Control Flow Control at Offtakes Remote and Centralized Control

Part 2
Experiences on modern canal control in Thailand

KU. April 2013

First stage in 2006

Install Robogate 5 in 2L and 5L-2L

SPN-CAS Robogate Installation					
Stage	O&M projects	Location			
I	SPN	Cross regulator 5L-2L km 3+650			
	SPN	Cross regulator 5L-2L km 9+813			
	SPN	Cross regulator 5L-2L km 20+300			
II	PNT	Head regulator 2L km 0+000			
	PNT	Cross regulator 2L km 10+300			
	BGL	Cross regulator 2L km 49+750			
	SPN	Cross regulator 5L-2L km 14+750			
	SPN	Cross regulator 5L-2L km 26+401			
ering	SPN	Cross regulator 5L-2L km 33+664, April 2013			

2L km.0+000, 10+300, 49+750 5L-2L km.3+650,9+813, 14+750, 20+300, 26+401, 33+664

Reliability of measurement by Robogate (during 4 Dec.2006-29 Sep. 2008)							
No. of Data to be Recorded	No. of Data Recorded	% Reliability of measurement					
111744	86251	77					
RM = Reliability of Measurement (%)							
RM= 100*No. of Data Recorded/Total No. of Data to be Recorded							

(during 4 Dec.2006-29 Sep. 2008)					
No.of Water Level Measurement	No. of Time Water Level Drop Below the Target Water Level by 10%	% RWLC			
79413	20645	74			
DWI C D 1: 1:11	CW + I 1 C + 1 (0/)				

Reliability of Water Level Control (%)

=100*(1-No. of Time Water Level Drop Below the Target Water Level by the Given Tolerance(10%)/No.of Water Level Measurement)

Department of Irrigation Engineering

KU April 2013

Water delivery performance of 5L-2L SPN

Season	Reach 1		Reach 2		Reach 3		5L-2L canal		nal
	PA	PE	PA	PE	PA	PE	PA	PE	PEQ
Dry S. 2 (2007) 6 Mar-18 Jun 2007 Manual	0.95 Good	0.73 Fair	0.80 Fair	0.67 Poor	1.00 Good	0.22 Poor	0.92 Good	0.54 Poor	0.03 Good
Wet S. (2007) 3 Jul-29 Oct 2007 Manual	1.00 Good	0.56 Poor	1.00 Good	0.44 Poor	0.59 Poor	1.00 Good	0.86 Fair	0.67 Poor	0.28 Poor
Dry S. 1 (07/08) 1 Nov 07- 27 Feb 08 Manual	1.00 Good	0.18 Poor	1.00 Good	0.17 Poor	1.00 Good	0.43 Poor	1.00 Good	0.26 Poor	0.00 Good
Dry S. 2 (2008) 6 Mar-18 Jun 2008 Automatic	1.00 Good	0.41 Poor	0.96 Good	0.68 Poor	1.00 Good	0.58 Poor	0.99 Good	0.56 Poor	0.02 Good
Wet S. (2008) 3 Jul-22 Oct 2008 Manual	1.00 Good	0.16 Poor	1.00 Good	0.32 Poor	0.42 Poor	1.00 Good	0.81 Fair	0.49 Poor	1.69 Poor

Part 3 Total Channel control (TCC)

Message from the President

Top 10 I&D technologies (by Peter Lee, Ex-president, ICID)

1.Farmer controlled water supply, or total channel control or downstream control of canals.....

Department of Irrigation Engineering

Dethridge water meter

