Crop Water Requirements & Irrigation Scheduling with CROPWAT 8.0 Application

By Assoc.Prof.Dr.Varawoot Vudhivanich Department of Irrigation Engineering Kasetsart University, Kamphaengsaen

Climate Smart Irrigation Training 21-25 May 2018

Crop Water Requirements(ETc)

Crop evapotranspiration under standard conditions; disease-free, well-fertilized crops, grown in large fields, under optimum soil water conditions, and achieving full production under the given climatic conditions.

When the standard conditions are not met, the actual crop ET will be lower than ETc.

Crop water requirements for Prachuap Khiri Khan province, Central and Western Thailand Downloaded from URL: water.rid.go.th/hwm/cropwater/CRWdata/ET

Crop		Growth				
No.	Crop name	period	Crop water r	equirements		
		days	mm./season	m³/rai		
1	Rice-Rice Department High Yield Variety	100	699	1,119		
2	Rice-Khao Dok Mali 105	100	629	1,006		
3	Rice-Basmati	100	695	1,112		
4	Wheat	100	311	498		
5	Maize	100	351	561		
6	Sweet corn	75	274	438		
7	Sorghum	110	387	619		
8	Soy bean	100	373	596		
9	Peanut	105	371	594		
10	Mung bean	70	215	344		
11	Sesame	90	295	471		
12	Tobacco	90	398	637		
13	Sun flower	110	392	627		
14	Water melon	85	418	668		
15	Cotton	160	471	753		
16	Sugarcane	300	978	1,564		
17	Castor bean	200	745	1,191		
18	Taro	170	1,177	1,884		
19	Asparagus	365	1,526	2,442		
20	Tomato	110	494	791		
21	Onion	100	395	632		
22	Shallots	85	304	487		
23	Garlic	110	269	431		
24	Potato	95	368	588		
25	Bird's eye chilli	150	483	774		
26	Bitter gourd	75	326	522		
27	Cauliflowers	45	197	316		
28	Chinese kale	55	165	265		
29	Yard long bean	80	287	459		
30	Graden pea	85	302	484		
31	Winged bean	135	396	634		
32	Chinese cabbage	60	196	313		
33	Chinese radish	45	186	297		
34	Baby corn	65	287	459		
35	Sweet potato	125	465	744		

An example seasonal crop water requirement published by RID

ET can be estimated from climatic data, crop data, soil-moisture data.

3 ET terms ETo \rightarrow ETc \rightarrow ETa

ETo= Reference crop ET depends on climatic data only. ETc=Kc.ETo Kc=Crop coefficient depending types of crop and stage of growth ETa=Ks.ETc Ks=Water stress coefficient

ETo = f(climate)

The evapotranspiration rate from a reference surface, not short of water, is called the reference crop evapotranspiration (ETo)

The reference surface is a hypothetical grass reference crop with specific characteristics, height of 0.12 m with a surface resistance of 70 s/m and an albedo of 0.23. This crop characteristics is closely resembling the evapotranspiration of green grass of uniform height, actively growing and adequately watered.

Penman-Monteith is recommended method for ETo calculation.

Average ETo for different agroclimatic regions(mm/day)

	Mean daily temperature (°C)							
Regions	Cool ~10°C	Moderate 20°C	Warm > 30°C					
Tropics and subtropics								
- humid and sub-humid	2 - 3	3 - 5	5 - 7					
- arid and semi-arid	2 - 4	4 - 6	6 - 8					
Temperate region								
- humid and sub-humid	1 - 2	2 - 4	4 - 7					
- arid and semi-arid	1 - 3	4 - 7	6 - 9 ₈					

Penman-Monteith Formula

$$ET_{o} = \frac{0.408\Delta(R_{n}-G) + \gamma (\frac{900}{T+273.16}) U_{2} (e_{s}-e_{a})}{\Delta + \gamma (1+0.34U_{2})}$$

EΤ₀	П	Reference crop evapotranspiration	(mm/day)
Δ	Ш	Slope of saturation vapor pressure curve	(kPa/°C)
γ	Ш	Psychrometric constant	(kPa/°C)
R _n	П	Net radiation at crop surface	(MJ/m²/day)
G	П	Soil heat flux	(MJ/m²/day)
T _{max}	T.	Maximum air temperature	(°C)
T _{min}	Ш	Minimum air temperature	(°C)
Т	Ш	Average air temperature	(°C)
U ₂	Π)	Windspeed measured at 2 m height	(m/s)
es	Ш	Saturated vapor pressure	(kPa)
ea	=	Actual vapor pressure	(kPa)

		1. Calculate Δ , T, e _s	
Δ	-	$\frac{4098e_s}{(T+237.3)^2}$	[1]
es	I	$\frac{e^{\circ}(T_{max}) + e^{\circ}(T_{min})}{2}$; (Saturation Vapor Pressure)	[2]
$e^{\circ}(T_{max})$	II	$0.6108 Exp\left(\frac{17.27 T_{max}}{T_{max}+237.3}\right)$	[3]
$e^{\circ}(T_{min})$		$0.6108Exp\left(\frac{17.27 T_{min}}{T_{min}+237.3}\right)$	[4]
Т	II	$\frac{T_{max} + T_{min}}{2}$	[5]
		2.Calculate e _a	
ea	Ξ	$\frac{RH_{mean}}{100}e_s$	[6]
		3.Calculate U ₂	
U ₂		$u_{z'} \frac{4.87}{\ln(67.8z'-5.42)}$; z'=Wind vane elevation (m)	[7]
		4.Calculate γ (Psychrometric constant)	
γ	H	0.665 x 10 ⁻³ P	[8]
P	I	$101.3\left(\frac{293-0.0065z}{293}\right)^{5.256}$; (Atmospheric pressure at altitude z m. MSL, kPa)	[9]

1	—	5. Calculate R. (Net radiation)	
R _n		R _{ns} -R _{nl}	[10]
R _{ns}		$(1-\alpha)R_s=(1-0.23)R_s$; (Net shortwave radiation)	[11]
Rs	=	$\left(a_{s}+b_{s}\frac{n}{N}\right)R_{a}=\left(0.25+0.5\frac{n}{N}\right)R_{a}$; (Solar radiation)	[12]
n		Actual sunshine hours (given data)	
N	=	$\frac{24}{\pi}\omega_{\rm s}$; (Daylight hours)	[13]
Ra	=	$\frac{24(60)}{\pi}G_{sc}d_r[\omega_s\sin(\phi)\sin(\delta) + \cos(\phi)\cos(\delta)\sin(\omega_s]$	[14]
		(Extraterrestrial radiation, MJ/m ² /day)	
G _{sc}		0.0820 ; (Solar constant, MJ/m ² /min)	[15]
d _r	0	$1 + 0.033 \cos\left(\frac{2\pi}{365}I\right)$; (Inverse relative distance between Earth-Sun)	[16]
J	- 21 <u>-</u> - 1	Integer(30.4M-15)	[17]
		No. of day in a year (Jan.1 =1, Dec.31=365), M=Month (1, 2,, 12)	
J		Integer(275M/9-30+D)-2 ; M=month, D=day for leap year	[18]
ω_s		$Cos^{-1}[-\tan(\phi)\tan(\delta)]$; (Sunset hour angle)	[19a]
or ω_s		$\frac{\pi}{2} - tan^{-1}\left[\frac{-\tan(\phi)\tan(\delta)}{X^{0.5}}\right]$	[19 b]
X		$1 - [\tan(\phi)]^2 [\tan(\delta)]^2$	[20a]
X	=	0.00001 if X<0	[20b]
φ		Latitude(radians)	
δ		$0.409sin\left(\frac{2\pi}{365}J - 1.39\right)$; (Solar declination angle)	[21]
R _{nl}		$\sigma \left[\frac{T_{max,k}^{4} + T_{min,k}^{4}}{2} \right] \left(0.34 - 0.14\sqrt{e_a} \right) \left(1.35 \frac{R_s}{R_{so}} - 0.35 \right)$	[22]
		(Net long wave radiation, MJ/m ² /day)	
σ		4.903x10 ⁻⁹ ; (Stefan-Boltzman constant, MJ/m ² /day)	[23]
Tmax.k		Tmax(°c)+273.16	[24]
Tmin.k	=	Tmin(°c)+273.16	[25]
$\frac{R_s}{R_{so}}$	=	Relative shortwave radiation ≤ 1.0	
R _{so}	=	$(0.75+2x10^{-5}z)R_a$; (Clear-sky radiation)	[26]
		6.Calculate G	
G		0.14 (T _i - T _{i-1}); (Soil heat flux)	[27]

ETo calculation

			Calculation 1			Description
Given Data			Tmean=	19.1	°C	
Month(M)	2	February	e∘(Tmax)=	3.42	kPa	Saturation vapor pressure at Tmax
Latitude(ϕ)	26.56	0	e∘(Tmin)=	1.39	kPa	Saturation vapor pressure at Tmin
Tmean(i-1)	18	°C	e _s =	2.41	kPa	Saturation vapor pressure
Tmax	26.3	°C	Δ=	0.15	kPa/∘c	Slope of saturation vapor pressure curve
Tmin	11.9	°C	P=	99.89	kPa	Atmosheric pressure
Tmean	19.1	°C	γ=	0.07	kPa/∘c	Psychrometric constant
Altitude(z)	120	m	(1+0.34u ₂)=	1.41		
u ₂ (m/s)	1.2	m/s	$[\Delta + \gamma (1 + 0.34u_2)] =$	0.24		
RH _{mean} =	63	%	Δ/[Δ+γ(1+0.34u ₂)]=	0.62		
n	8.4	hrs.	$\gamma/[\Delta + \gamma(1 + 0.34u_2)] =$	0.27		
			[900/(Tmean+273.16)]u ₂ =	3.71		
			$e_a = (RH_{mean}/100) * e_s =$	1.52	kPa	
			e _s -e _a =	0.89	kPa	Saturation vapor pressure deficit
			Aerodynamic term=	0.9006	mm/day	

Calculation 2			
J=	45	sin	Number of days in year
φ=	0.4636	0.4471	Latitude
δ=	-0.2361	-0.2339	Solar declination angle
Х=	0.9855		
WS=	1.4502	1.4502	Sunset hour angle
dr=	1.0236		Inverse relative distance between Earth-Sun
Gsc=	0.0820	MJ/m2/min	Solar constant
ws*sin(ϕ)*sin(δ)=	-0.1517		
sin(ws)=	0.9927		
$\cos(\phi) \cos(\delta) \sin(\omega s) =$	0.8633		
R _a =	27.3794	MJ/m2/day	Extraterrestrial radiation
N=	11.0790	hrs	Daylight hours
Rs=	17.22	MJ/m2/day	
α=	0.23		Albedo
σ=	4.903E-09		Stefan-Boltzman constant
Tmax.k ⁴ =	8,041,837,275		Tmax in kelvin
Tmin.k ⁴ =	6,603,058,170		Tmin in kelvin
Tmean.k ⁴ =	7,322,447,722		Tmean in kelvin
Rso=	20.5351	MJ/m2/day	Clear-sky radiation
Rs/Rso=	0.8388		Relative shortwave radiation
sqrt(e _a) =	1.2315		
R _{nI} =	4.7416	MJ/m2/day	Net longwave radiation
$R_n = R_{ns} - R_n I =$	8.5210	MJ/m2/day	Net solar radiation
G=0.14[Tmean(i)-Tmean(i-1)]=	0.1540	MJ/m2/day	Soil heat flux
Radiation term[1]=	2.10	mm/day	
Aerodynamic term[2]=	0.90	mm/day	
ETo=[1]+[2]	3.00	mm/day	
	84.1	mm/month	

Programme structure = 8 different modules Data input & basic calculation modules

- Climate/ETo: Input the measured ETo data or climatic data for ETo calculation
- (2) Rain: Input the rainfall data and calculation of effective rainfall
- (3) **Crop**: Input the crop data and planting date for ETc calculation in (6)
- (4) Soil: Input the soil data for irrigation scheduling in(7)
- (5) **Crop pattern**: Input the cropping pattern for scheme supply calculations in (8)
- Note that in fact Climate/ETo and Rain modules are not only for data input but also calculate data, namely Radiation / ETO and Effective rainfall respectively.

Calculation modules

- (6) **CWR** for calculation of Crop Water Requirements
- (7) Schedules for the calculation of irrigation schedules
- (8) **Scheme** for the calculation of scheme supply based on a specific cropping pattern

CLIMWAT 2.0

8 climate stations around Bhutan

🗱 CLIMWAT 2.0 - Local Station Distribution

Exit Export New Location Stations Display Zoom In Zoom Out Export Selected Stations Colors Disdaimer About

Nr.	Lon [?]	Lat [?]	Alt [m]	Name	Countr
1	89.08	27.73	430	PAGRI	CHINA
2	91.58	26.1	54	GAUHATI	INDIA
3	92.78	26.61	79	TEZPUR	INDIA
4	88.71	26.53	83	JALPAIGURI	INDIA
5	89.98	26.01	35	DHUBRI	INDIA
6	88.26	27.05	2128	DARJEELING	INDIA
7	88.46	27.06	1209	KALIMPONG	INDIA
8	88.05	26.56	120	CHANDRAGADH:	NEPAL

1=PAGRI-CHINA 2=GAUHUTI-INDIA 3=TEZPUR-INDIA 4=JALPAIGURI-INDIA 5=DHUBRI-INDIA 6=DARJEELING-INDIA 7=KALIMPONG-INDIA 8=CHANDRAGADHI-NEPAL

with 🔻 🛛 Burn 🛛 New folde	ſ	
lame ^	Date modified	Туре
CHANDRAGADHI.cli	5/14/2018 3:23 PM	CLI File
CHANDRAGADHI.pen	5/14/2018 3:23 PM	PEN File
DARJEELING.cli	5/14/2018 3:23 PM	CLI File
DARJEELING.pen	5/14/2018 3:23 PM	PEN File
DHUBRI.cli	5/14/2018 3:23 PM	CLI File
DHUBRI.pen	5/14/2018 3:23 PM	PEN File
GAUHATI.cli	5/14/2018 3:23 PM	CLI File
GAUHATI.pen	5/14/2018 3:23 PM	PEN File
JALPAIGURI.cli	5/14/2018 3:23 PM	CLI File
JALPAIGURI.pen	5/14/2018 3:23 PM	PEN File
KALIMPONG.cli	5/14/2018 3:23 PM	CLI File
KALIMPONG.pen	5/14/2018 3:23 PM	PEN File
PAGRI.cli	5/14/2018 3:23 PM	CLI File
PAGRI.pen	5/14/2018 3:23 PM	PEN File
TEZPUR.cli	5/14/2018 3:23 PM	CLI File
TEZPUR.pen	5/14/2018 3:23 PM	PEN File

Local Disk (C:) > My_CLIMWAT_Files

EXAMPLE - ETo Calculation

Country Loo	cation 8		Station CHANDRAGADHI-									
Altitude 1	20 m.	Li	atitude 26.5	6 <u>s</u> N 💌		Longitude 88.05 sE						
Month	Min Temp	Max Temp	Humidity	Wind	Sun	Rad	ETo					
	?C	?C	%	km/day	hours	MJ/m?/day	mm/month					
January	10.5	23.4	66	86	7.9	14.6	70.11					
February	11.9	26.3	63	104	8.4	17.3	84.44					
March	15.9	32.0	56	121	8.8	20.4	135.85					
April	20.2	34.8	37	147	8.8	22.3	177.60					
May	23.1	34.0	67	147	8.1	22.1	166.81					
June	25.1	33.0	77	130	5.3	18.1	131.34					
July	25.3	32.2	82	121	4.2	16.3	119.69					
August	24.9	32.3	84	104	4.6	16.3	116.06					
September	24.0	31.7	86	95	5.7	16.6	108.51					
October	21.7	31.4	74	86	7.1	16.3	109.05					
November	15.4	29.8	69	78	8.1	15.2	87.95					
December	10.9	24.7	76	78	7.8	13.7	66.95					
Average	19.1	30.5	70	108	7.1	17.4	1374.36					

Monthly ETo P	enman-Mont	teith - G:\00	-training\lrr	igation proje	ct plannin	g-7Mar\Bhu		Monthly ETo I	Penman-Mon	teith - G:\00	-training\lrr	igation proje	ct plannin	g-7Mar\Bhu	
Country Location 1 Station PAGRI-China								Country Loo	ation 2				Station	GAUHATI-India	3
Altitude 430 m. Latitude 27.73 sN - Longitude 89.08 sE				08 [şE 💌	Altitude	Altitude 54 m. Latitude 26.10 sN - Longitude 91.58					58 <u>s</u> E 💌				
Month	Min Temp	Max Temp	Humidity	Wind	Sun	Rad	ETo	Month	Min Temp	Max Temp	Humidity	Wind	Sun	Rad	ETo
	?C	?C	%	km/day	hours	MJ/m?/day	mm/day		?C	?C	%	km/day	hours	MJ/m?/day	mm/day
January	-23.0	-7.1	39	199	7.8	14.1	0.92	January	10.5	23.6	77	52	7.1	13.8	1.97
February	-17.0	-3.4	53	207	7.6	16.0	1.12	February	11.9	26.0	65	69	7.5	16.3	2.68
March	-12.2	1.2	63	181	7.2	17.9	1.47	March	15.7	29.9	57	95	6.8	17.7	3.70
April	-6.0	6.0	66	207	6.9	19.4	2.02	April	19.9	30.7	65	147	6.7	19.3	4.50
May	-3.0	9.4	70	233	7.1	20.6	2.45	May	22.4	31.0	74	95	5.9	18.8	4.14
June	-3.0	11.0	77	259	5.6	18.5	2.37	June	24.8	31.9	81	95	3.4	15.2	3.57
July	-3.5	12.0	81	225	4.1	16.1	2.19	July	25.3	31.7	81	69	3.3	14.9	3.46
August	-3.5	11.7	82	216	5.0	16.8	2.16	August	25.4	32.1	82	69	3.8	15.1	3.49
September	-5.0	10.1	80	207	4.8	15.1	1.92	September	24.4	31.4	81	69	4.5	14.9	3.35
October	-8.0	8.0	69	190	6.7	15.5	1.84	October	21.9	30.2	81	69	6.3	15.3	3.18
November	-13.5	2.1	57	190	7.8	14.5	1.41	November	16.8	27.5	83	69	7.5	14.6	2.61
December	-17.5	-5.5	40	147	7.6	13.2	0.96	December	11.8	24.4	83	52	7.0	13.0	1.95
Average	-9.6	4.6	65	205	6.5	16.5	1.74	Average	19.2	29.2	76	79	5.8	15.8	3.22

💯 Monthly ETo Penman-Monteith - G:\00-training\Irrigation project planning-7Mar\Bhu 💶 🔲								🛞 Monthly ETo 🛛	Penman-Mon	teith - G:\00-	-training\lrri	igation proje	ect plannin	g-7Mar\Bhu	- 🗖 🗖 🔀
Country Loc	ation 4				Station	JALPAIGURI-Ir	idia	Country Location 3 Station TEZPUR-India							
Altitude 8	Altitude 83 m. Latitude 26.53 §N Longitude 88.71 §E				Altitude 7	'9 m .	La	atitude 26.6	1 sN 💌	L	ongitude 92.	78 se 💌			
Month	Min Temp	Max Temp	Humidity	Wind	Sun	Rad	ETo	Month	Min Temp	Max Temp	Humidity	Wind	Sun	Rad	ETo
	?C	?C	%	km/day	hours	MJ/m?/day	mm/day		?C	?C	%	km/day	hours	MJ/m?/day	mm/day
January	10.8	23.4	71	26	7.8	14.5	1.89	January	11.4	23.7	100	26	8.7	15.4	2.04
February	12.7	25.2	63	26	8.2	17.0	2.41	February	13.7	25.4	81	61	8.1	16.9	2.59
March	16.4	29.6	53	86	8.8	20.4	3.94	March	17.1	29.0	65	95	8.7	20.2	3.87
April	20.4	31.6	57	130	8.6	22.0	5.03	April	20.2	30.3	67	130	8.3	21.6	4.66
May	22.9	30.9	73	147	6.8	20.1	4.63	May	22.5	30.3	88	95	6.9	20.3	4.12
June	24.3	30.6	81	121	5.3	18.1	4.04	June	24.7	31.6	93	61	5.6	18.5	3.92
July	25.0	30.6	84	112	4.1	16.1	3.66	July	25.3	32.1	90	26	5.3	17.9	3.91
August	24.9	30.8	83	95	4.6	16.3	3.65	August	25.4	32.2	91	26	5.7	17.9	3.90
September	24.4	30.7	81	86	4.9	15.4	3.44	September	24.7	31.7	96	26	6.1	17.1	3.66
October	21.4	30.0	75	78	7.4	16.7	3.42	October	21.8	30.2	94	26	7.7	17.0	3.36
November	16.2	27.7	73	35	8.3	15.4	2.54	November	16.5	27.6	100	35	8.8	16.0	2.66
December	12.1	25.0	72	35	8.1	14.1	1.99	December	12.4	24.7	100	35	9.1	15.1	2.08
Average	19.3	28.8	72	81	6.9	17.2	3.39	Average	19.6	29.1	89	53	7.4	17.8	3.40

🛞 Monthly ETo P	enman-Mont	eith - G:\00	-training\lrri	igation proje	ct plannin	g-7Mar\Bhu		Monthly ETo F	enman-Mont	eith - G:\00	training\lrri	igation proj	ect plannin	g-7Mar\Bhu	. 🗖 🗖 🔀
Country Loca	ation 5				Station	DHUBRI-India		Country Location 6 Station DARJEELING				DARJEELING-	ndia		
Altitude 35	5 m .	L	Latitude 26.01 sN - Longitude 89.98 si			98 <u>s</u> E 💌	Altitude 2128 m.			Latitude 27.05 sN 💌		L	Longitude 88.26 sE 💌		
Month	Min Temp	Max Temp	Humidity	Wind	Sun	Rad	ETo	Month	Min Temp	Max Temp	Humidity	Wind	Sun	Rad	ETo
	?C	?C	%	km/day	hours	MJ/m?/day	mm/day		?C	?C	%	km/day	hours	MJ/m?/day	mm/day
January	11.7	23.3	86	61	7.8	14.6	2.02	January	3.0	9.3	100	26	5.1	11.4	1.27
February	13.3	25.5	78	95	8.2	17.2	2.75	February	4.3	11.1	100	61	4.8	12.7	1.49
March	17.2	30.0	57	121	8.5	20.1	4.23	March	7.7	14.8	92	61	5.5	15.7	2.20
April	21.1	30.5	61	156	8.1	21.3	4.96	April	10.8	18.0	100	95	5.5	17.4	2.66
May	22.8	30.0	90	138	6.0	19.0	3.86	May	12.9	18.6	100	61	3.3	14.9	2.58
June	24.4	30.0	96	121	6.0	19.1	3.80	June	14.7	19.3	100	61	1.1	11.8	2.22
July	25.5	30.0	93	112	5.8	18.7	3.85	July	15.4	19.8	100	52	0.0	10.0	2.01
August	26.1	30.0	92	95	5.6	17.8	3.74	August	15.4	19.8	100	61	1.1	11.1	2.14
September	25.0	29.4	91	95	6.0	17.0	3.50	September	14.6	19.9	100	43	1.4	10.5	2.03
October	22.8	29.4	93	95	6.9	16.1	3.15	October	11.5	18.6	100	26	4.9	13.4	2.26
November	17.8	26.7	95	78	7.9	15.1	2.54	November	7.4	15.3	100	26	5.5	12.1	1.73
December	12.8	23.3	91	69	8.4	14.6	2.02	December	4.4	11.9	99	26	5.6	11.3	1.36
Average	20.0	28.2	85	103	7.1	17.5	3.37	Average	10.2	16.4	99	50	3.6	12.7	2.00
								v	211						

Country I.e.			5	gaan projo	CLAN				Comment-oncom		arannug un	Barron broj	see prantin		
Country Loo	ation /			_	station	ALIMPUNG-I	ndia	Lountry Location 8			Station CHANDRAGADHI-Nepal				
Altitude 12	09 m .	Li	atitude 27.0	6 <u>s</u> N 💌	1	ongitude 88.	46 <u>s</u> E 💌	Altitude 1	Altitude 120 m. Latitude 26.56 §N ✓ Longitude 88.05 §E ✓						05 <u>s</u> E 💌
Month	Min Temp	Max Temp	Humidity	Wind	Sun	Rad	ETo	Month	Min Temp	Max Temp	Humidity	Wind	Sun	Rad	ETo
	?C	?C	%	km/day	hours	MJ/m?/day	mm/day		?C	?C	%	km/day	hours	MJ/m?/day	mm/day
January	7.8	15.5	78	164	6.2	12.6	1.81	January	10.5	23.4	66	86	7.9	14.6	2.26
February	9.1	16.7	76	164	6.7	15.1	2.25	February	11.9	26.3	63	104	8.4	17.3	3.02
March	12.2	20.6	68	164	8.0	19.2	3.34	March	15.9	32.0	56	121	8.8	20.4	4.38
April	15.0	23.1	72	190	8.0	21.1	3.99	April	20.2	34.8	37	147	8.8	22.3	5.92
May	17.3	24.1	82	164	6.8	20.1	3.82	May	23.1	34.0	67	147	8.1	22.1	5.38
June	18.9	24.4	87	130	7.0	20.6	3.87	June	25.1	33.0	77	130	5.3	18.1	4.38
July	19.2	24.1	90	130	6.0	19.0	3.55	July	25.3	32.2	82	121	4.2	16.3	3.86
August	19.3	24.3	88	130	4.7	16.4	3.20	August	24.9	32.3	84	104	4.6	16.3	3.74
September	18.8	24.1	90	130	3.7	13.7	2.67	September	24.0	31.7	86	95	5.7	16.6	3.62
October	16.1	23.3	82	164	7.1	16.2	2.97	October	21.7	31.4	74	86	7.1	16.3	3.52
November	11.6	20.0	78	164	7.2	14.0	2.36	November	15.4	29.8	69	78	8.1	15.2	2.93
December	8.8	17.3	76	164	7.3	13.1	1.96	December	10.9	24.7	76	78	7.8	13.7	2.16
Average	14.5	21.5	81	155	6.6	16.7	2.98	Average	19.1	30.5	70	108	7.1	17.4	3.76
									90 S						

Alternative ETo Calculation (ETo = Kp.Epan)

ETo Under standard conditions

disease-free, well-fertilized, grown in large fields, under optimum soil water conditions.

ETc = crop evapotranspiration under standard condition [mm/day]
ETo = reference crop evapotranspiration [mm/day]
Kc = crop factor or crop coefficient varying with the crop type and growing periods

General Crop coefficient curve Kc_{ini}, Kc_{mid}, Kc_{end}

Initial stage –This stage runs from planting date to approximately 10% ground cover. Crop development stage-This stage runs from 10% ground cover to effective full cover. Mid-season stage –This stage runs from effective full cover to the start of maturity. Late season stage –This stage runs from the start of maturity to harvest.

Typical ranges expected in Kc for the four growth stages

ETc calculation procedure

- identifying the crop growth stages, determining their lengths, and selecting the corresponding Kc
- adjusting the selected Kc coefficients for frequency of wetting or climatic conditions during the stage
- constructing the crop coefficient curve
- calculating ETc = Kc.ETo

Crop growth stages for different types of crops

EXAMPLE – Growth stages and Kc (FAO)

TABLE 11											
Lengths of crop	develop	ment stag	es* for va	rious plant	ting perio	ods and climat	ic regions (days)				
Crop	Init.	Dev.	Mid	Late	Total	Plant Date	Region				
	(L _{ini})	(L _{dev})	(L _{mid})	(L _{late})							
a. Small Vegeta	bles										
Broccoli	35	45	40	15	135	Sept	Calif. Desert, USA				
Cabbage	40	60	50	15	165	Sept	Calif. Desert, USA				
Carrots	20	30	50/30	20	100	Oct/Jan	Arid climate				
	30	40	60	20	150	Feb/Mar	Mediterranean				
	30	50	90	30	200	Oct	Calif. Desert, USA				
Cauliflower	35	50	40	15	140	Sept	Calif. Desert, USA				
Celery	25	40	05	20	100	Oat	(Somi) Arid				
	25	40	TABLE	12							
	30	55	Single	(time-av	eraged	crop coeff	icients. K., and m	ean maxi	mum plant	heights for	non stressed.
Crucifers ¹	20	30	Ungio				-limeter (DU	450/		-) f	
	25	35	well-m	anageo	crops i	n subnumia	climates (RHmin	≈ 45%,	u2 ≈ 2 m	s) for use	with the FAU
	30	35	Penma	n-Monte	ith ETo						
Lettuce	20	30									Maximum
	30	40									Crop Height
	25	35	Crop					K1	к	K .	(h)
	35	50	Crop					"C INI	"c mid	C end	(m)
Onion (dry)	15	25									(11)
	20	35	a. Sm	nall Veget	ables			0.7	1.05	0.95	
Onion (green)	25	30	Brocco	oli					1.05	0.95	0.3
	20	45	Brusse	el Sprouts	5				1.05	0.95	0.4
	30	55	Cabba	ge					1.05	0.95	0.4
			Carrot	S					1.05	0.95	0.3
			Caulif	ower					1.05	0.95	0.4
			Celery	,					1.05	1.00	0.6
			Garlic						1.00	0.70	0.3
			Lettuc	е					1.00	0.95	0.3
			Onion	s - dry					1.05	0.75	0.4
				- green					1.00	1.00	0.3
				- seed					1.05	0.80	0.5
			Spinad	ch					1.00	0.95	0.3
			Radish	1					0.90	0.85	0.3

Kc for initial stage

Kc for initial stage varies between 0.1 – 1.15 In general Kc for initial stage can be determined from Table 12(FAO I&D 56) for typical irrigation water management.

For more accurate estimate, Kc from Table 12 should be adjusted according soil moisture and evaporative power.

- (1) Time interval between wetting events, the more frequently wetting the soil is the larger Kc(ini).
- (2) Evaporative power of the atmosphere, the higher ETo is the smaller Kc(ini) due to the lower soil moisture
- (3) Magnitude of wetting events, the larger wetting events is the higher Kc(ini).

Calculate I for adjusting Kc(ini) for non-uniform water application

|*1= lw*fw |=lw*fw

EXAMPLE 25. Interpolation between light and heavy wetting events

Small vegetables cultivated in a dry area on a coarse textured soil receive 20 mm of water twice a week by means of a sprinkler irrigation system. The average ET_o during the initial stage is 5 mm/day. Determine Kc(ini).

For: twice a week irrigation	7/2=	3.5	day
			interval
	ET _o =	5	mm/day
From Fig. 29:	$K_{c \text{ ini (Fig. 29)}} \approx$	0.55	-
From Fig. 30. a:	K _{c ini (Fig. 30a)} ≈	0.7	-
For:	=	20	mm
From Eq. 59:	K _{c ini} = Kc ini(Fig29)+(I-10)*[Kc ini(Fig30)- Kc ini(Fig29)]/(40-10)	0.6	

Kc(ini)=0.55+(20-10)*(0.7-0.55)/(40-10)=0.6

31

Kc for mid season stage (Kc mid)

Kc mid can be determined from Table 12, [Kc mid(Tab)].

The effect of climate on Kc mid can be determined by the following equation.

$$K_{Cmid} = K_{Cmid(Table)} + \left[0.04(u_2 - 2) - 0.004(RH_{min} - 45)\left(\frac{h}{3}\right)^{0.3} \right]$$

where

 $K_{c \text{ mid (Tab)}}$ value for $K_{c \text{ mid}}$ taken from Table 12,

 u_2 mean value for daily wind speed at 2 m height over grass during the midseason growth stage [m s⁻¹], for 1 m s⁻¹ $\leq u_2 \leq 6$ m s⁻¹,

 RH_{min} mean value for daily minimum relative humidity during the mid-season growth stage [%], for 20% $\leq RH_{min} \leq 80\%$,

h mean plant height during the mid-season stage [m] for 0.1 m < h < 10 m.

Kc for late season stage (Kc end)

Kc end can be determined from Table 12, [Kc end(Tab)].

The effect of climate on Kc end is similar to Kc mid which can be determined by the following equation.

where

 $K_{c end (Tab)}$ value for $K_{c end}$ taken from Table 12,

 u_2 mean value for daily wind speed at 2 m height over grass during the late season growth stage [m s⁻¹], for 1 m s⁻¹ $\leq u_2 \leq 6$ m s⁻¹,

 RH_{min} mean value for daily minimum relative humidity during the late season stage [%], for 20% $\leq RH_{min} \leq 80\%$,

h mean plant height during the late season stage [m], for 0.1 m \leq h \leq 10 m.

Kc curve and 10 values for Kc and ETc for dry bean crop

Numerical determination of Kc

$$K_{Ci} = K_{Cprev} +$$

$$\frac{\sum L_{\text{prev}}}{L_{\text{stage}}} \left[\left(K_{\text{C next}} \right) \right]$$

$$-K_{C prev}$$
)

- i = day number within the growing season [1.. length of the growing season]
- Kci = crop coefficient on day i
- Lstage = length of the stage under consideration [days]
- Σ(Lprev) = sum of the lengths of all previous stages [days].

Table 7 Numer	Table 7 Numerical determination of K _c										
Determine K_c at every 10 day for the dry bean crop											
Crop growth stage	Length (days)	K _c									
initial	25	K _{c ini} = 0.15									
crop development	25	0.15 1.19									
mid-season	30	K _{c mid} = 1.19									
late season	20	1.19 K _{c end} = 0.35									

i(day)	Given Kc	Lstage	(Kc next- Kc prev)	slope=	Kc next	- Kc prev
0	0.15					
25	0.15	25	0		0	
50	1.19	25	1.04		0.0416	
80	1.19	30	0		0	
100	0.35	20	-0.84		-0.042	
i(day)	S(L prev)	slope	Kc prev	Kci	Kci avg	lavg
0	0	0	0.15	0.15		
10				0.15	0.15	5
20				0.15	0.15	15
25	25	0.042	0.15	0.15	0.15	22.5
30				0.36	0.25	27.5
40				0.77	0.57	35
50	50	0	1.19	1.19	0.98	45
60				1.19	1.19	55
70				1.19	1.19	65
80	80	-0.042	1.19	1.19	1.19	75
90				0.77	0.98	85
100			0.35	0.35	0.56	95

Kc curve as calculated in previous table

EXAMPLE – Kc (RID)

Available CROPS in CROPWAT 8.0

🛞 Open			x
Look in: 📔 FAO	- ← 🗈 📸 -		
ALFALFA0.CRO	ALFALFA1.CRO	ARTICHOK.CRO	
BANANA1.CRO	BANANA2.CRO	BARLEY.CRO	
BEANS-DR.CRO	BEANS-GR.CRO	CABBAGE.CRO	
CITRUS.CRO	COTTON.CRO	🛞 DATEPALM.CRO	
GRAINS.CRO	GRAPES-T.CRO	BRAPES-W.CRO	
GRASS-C.CRO	GRASS-W.CRO	🛞 GRONDNUT.CRO	
MAIZE.CRO	🛞 MANGO.CRO	MILLET.CRO	
PASTURE.CRO	DEPPER.CRO	🛞 POTATO.CRO	
DULSES.CRO	🛞 RICE.CRO	🛞 SORGHUM.CRO	
SOYBEAN.CRO	🛞 SUGARBET.CRO	🛞 SUGARCAN.CRO	
BUNFLOWR.CRO	BW-MELON.CRO	TOBACCO.CRO	
TOMATO.CRO	B VEGETABL.CRO	B WHEAT.CRO	
W-WHEAT.CRO	🛞 W-WHEATF.CRO		
File name:		Open	
			-
Files of type: Crop files (*.cro)		✓ Cancel	

Kc – Banana1 (CROPWAT)

Kc – Rice (CROPWAT)

Net IWR = ETc - Peff

Effective Rainfall (Peff or Re)

Peff = portion of rainfall that can be utilized by crops

Peff = P - RO - DP

Peff = effective rainfall P = rainfall RO = runoff loss DP = deep percolation loss

5 Effective Rainfall Methods

CROPWAT options

Fixed Percentage:	80 %	CROPWAT applies to adjust formulas
O Dependable rain (FAO//	AGLW formula)	data (for effective rainfall calculations
Peff = 0.6 * P - 10 /3	for Pmonth <= 70 <mark>/3</mark>	dany data are aggregated per decade,
Peff = 0.8 * P - 24 <mark>/3</mark>	for Pmonth > 70 <mark>/</mark> 3	
Empirical formula		
Peff = 1.0 *P+	0 /3 for P<=	200 /3 mm
Peff = 0.5 *P+	99 <mark>/3</mark> for P >	200 <mark>/3</mark> mm
O USDA soil conservation	n service	
Peff = (P*(125-0.2 *	3 *P)) / 125 for F	? <= 250 <mark>/3</mark> mm
Peff = 125 <mark>/3</mark> + 0.1 * F	> for	P>250 <mark>/3</mark> mm
Rainfall not considered	in irrigation calculation	ns (effective rainfall = 0)

Effective Rainfall Methods

(1) Fixed percentagePeff = Fixed percentage * P	
(2) Dependable rainfall (FAO/AGI	LW formula)
For different arid and sub-humid climates,	
For design purposes where 80% probabili	ty of exceedance is required.
Monthly step	
Peff = 0.6 * P -10	for Pmonth < 70 mm
Peff = 0.8 * P -24	for Pmonth > 70 mm
Decade step	
Peff(dec) = 0.6 * Pdec - (10 / 3)	for Pdec < (70 / 3) m
Peff(dec) = 0.8 * Pdec - (24 / 3)	for Pdec $> (70/3)$ m

(3) Empirical formula

Same formula as for Dependable rainfall but the parameters may be determined from an analysis of local climatic records.

Monthly step

Peff = a * Pmonth - b

Peff = c * Pmonth - d

Decade step

Peff(dec) = a * Pdec - (b / 3)

Peff(dec) = c * Pdec - (d / 3)

for Pmonth < z mm

for Pmonth > z mm

for Pdec < (z / 3) mm

for Pdec > (z / 3) mm

Values for a, b, c, d and z are the formula coefficients.

) mm

mm

(4) USDA Soil Conservation Service
Monthly stepPeff = Pmonth * (125 - 0.2 * Pmonth) / 125for Pmonth<250 mm</td>Peff = 125 + 0.1 * Pmonthfor Pmonth>250 mmDecade stepfor Pmonth>250 mmPeff(dec) = Pdec * (125 - 0.2*3* Pdec)) / 125for Pdec<(250/3) mm</td>Peff(dec) = (125 / 3) + 0.1 * Pdecfor Pdec>(250/3) mmValues for a, b, c, d and z are the formula coefficients.

49

Monthly effective rainfall for rice in Northeast, Thailand

	500 - 450 -												Mo P(I	nthly mm)	Monthly Peff(mm)
	400 -						-0.00	11v ² -	- 1 21	19v				0	0
Ē	250					y –	-0.00 R ²	= 0.99	976	132				50	50
ıfall [n	350 -											-	1	.00	100
re Rair	300 -												1	50	150
ffectiv	250 -					/							2	200	200
ithly E	200 -												2	250	237.5
Non	150 -												3	600	270
	100 -												3	50	292.5
	50 -												4	00	310
	0 -	¥ 0 5	0 10	00 1	50 20	00 2	50 30	00 3	50 4	00 4	150	 500	4	50	320
					Montł	nly Ra	ainfall	[mm]					5	500	325

Irrigation Water Requirement

Net IWR = ETc – Peff

- Net IWR = net irrgation water requirement of the field [mm/day]
- ETc = crop evapotranspiration [mm/day]
- Peff = effective rainfall [mm/day]

Total IWR = 100* Net IWR / Ei

Ei=Irrigation efficiency

Irrigation efficier	ıcy(%	(0)	
	Low	Medium	High
Application Efficiency (E _a)	50	80	65
Surface irrigation	50	80	65
Sub-surface irrigation		<60	
Sprinkler	60	80	70
Paddy field	65	75	70
Field Canal Efficiency (E _b)	70	90	80
Conveyance Efficiency (E _c)	65	90	78
Irrigation Efficiency (E _i =E _a .E _b .E _c)	23	65	44

*Doorenbos and Pruitt(1977) and Ilaco/Empire M&T(1979)

🛞 Monthly rain - G:	\00-training\lrrig	ation project	planning-7Mar	\Bhutan\CHA 🔳 🗖 🔀	
Station HAN	DRAGADHI-Nepal-8	E	ff. rain method	USDA S.C. Method	
		Rain	Eff rain		
		mm	mm		
	January	6.0	5.9		
	February	18.0	17.5	Monthly step	
	March	19.0	18.4	Peff=P*(125-0.2*P)/125	P<250
	April	62.0	55.8	Peff=125+0.1*P	P>250
	May	188.0	131.4		
	June	390.0	164.0		
	July	730.0	198.0		
	August	406.0	165.6		
	September	456.0	170.6		
	October	111.0	91.3		
	November	9.0	8.9		
	December	8.0	7.9		
	Total	2403.0	1035.4		
			-3	- Ale	

9	Cı	op Wate	r Requi	rements			
ETo statio	on CHANDP	AGADHI-Nepa				Crop	BANANA 1 st year
Rain statio	Rain station CHANDRAGADHI-Nept					Planting date	17/05
Month	Decade	Stage	Kc	ETc	ETc	Eff rain	Irr. Req.
			coeff	mm/day	mm/dec	mm/dec	mm/dec
May	2	Init	0.50	2.69	10.8	18.3	0.0
May	3	Init	0.50	2.52	27.8	48.8	0.0
Jun	1	Init	0.50	2.36	23.6	51.0	0.0
Jun	2	Init	0.50	2.19	21.9	54.6	0.0
Jun	3	Init	0.50	2.10	21.0	58.4	0.0
Jul	1 -	Init	0.50	2.02	20.2	64.3	0.0
Jul	2	Init	0.50	1.93	19.3	69.1	0.0
Jul	3	Init	0.50	1.91	21.0	64.5	0.0
Aug	1	Init	0.50	1.89	18.9	57.6	0.0
Aug	2	Deve	0.51	1.90	19.0	53.5	0.0
Aug	3	Deve	0.54	2.01	22.1	54.6	0.0
Sep	1	Deve	0.58	2.12	21.2	59.0	0.0
Sep	2	Deve	0.62	2.23	22.3	60.9	0.0
Sep	3	Deve	0.65	2.33	23.3	50.7	0.0
Oct	1	Deve	0.69	2.44	24.4	39.3	0.0
Oct	2	Deve	0.72	2.54	25.4	30.5	0.0
Oct	3	Deve	0.76	2.53	27.8	21.3	6.4
Nov	1	Deve	0.80	2.49	24.9	8.3	16.7
Nov	2	Deve	0.83	2.44	24.4	0.0	24.4
Nov	3	Deve	0.87	2.32	23.2	0.7	22.5
Dec	1	Deve	0.90	2.19	21.9	2.7	19.1
Dec	2	Deve	0.94	2.03	20.3	2.6	17.7
Dec	3	Deve	0.98	2.14	23.6	2.4	21.2
Jan	1	Deve	1.01	2.26	22.6	1.8	20.8
Jan	2	Deve	1.05	2.38	23.8	1.4	22.4
Jan	3	Mid	1.08	2.72	29.9	2.9	27.1
Feb	1	Mid	1.09	3.01	30.1	4.8	25.2
Feb	2	Mid	1.09	3.28	32.8	6.3	26.5
Feb	3	Mid	1.09	3.78	30.2	6.2	24.0
Mar	1	Mid	1.09	4.27	42.7	4.9	37.8
Mar	2	Late	1.08	4.72	47.2	4.4	42.8
Mar	3	Late	1.05	5.13	56.4	9.2	47.2
Apr	1	Late	1.02	5.64	56.4	13.3	43.1
Apr	2	Late	1.00	6.13	6.1	1.7	6.1
					886.5	930.0	451.1

ETc and Net IWR of Banana1

55

Effective rainfall for rice, Thailand

	🖲 Monthly	rain - I:\	2018	. –
	Station CHAN	IDRAGADHI-Nepal-	E	if. rain method 🖡
			Rain	Eff rain
			mm	mm
		January	6.0	6.0
		February	18.0	18.0
		March	19.0	19.0
	f P<200mm	April	62.0	62.0
Pett={'		May	188.0	188.0
· · · · · · · · · · · · · · · · · · ·	f P>200mm	June	390.0	294.0
0.01 000		July	730.0	464.0
		August	406.0	302.0
		September	456.0	327.0
		October	111.0	111.0
		November	9.0	9.0
		December	8.0	8.0
		Total	2403.0	1808.0

		1	L.				
ETo sta	tion CHANDF	RAGADHI-Nept				Crop	Rice
Rain sta	tion CHANDF	RAGADHI-Nept				Planting date	16/05
Honth	Decade	Stage	Kc	ETc	ETc	Eff rain	Irr. Req.
			coeff	mm/day	mm/dec	mm/dec	mm/dec
Apr	2	Nurs	1.20	0.73	3.7	8.4	0.0
Apr	3	Nurs/LPr	1.13	3.48	34.8	32.1	28.2
May	1	Nurs/LPr	1.06	5.92	59.2	49.3	10.0
May	2	Init	1.08	5.83	58.3	63.6	128.5
May	3	Init	1.10	5.55	61.1	75.0	0.0
Jun	1	Deve	1.10	5.19	51.9	84.2	0.0
Jun	2	Deve	1.11	4.85	48.5	95.0	0.0
Jun	3	Deve	1.11	4.68	46.8	114.9	0.0
Jul	1	Mid	1.12	4.51	45.1	146.3	0.0
Jul	2	Mid	1.12	4.32	43.2	170.4	0.0
Jul	3	Mid	1.12	4.28	47.1	147.2	0.0
Aug	1	Mid	1.12	4.23	42.3	112.8	0.0
Aug	2	Late	1.11	4.14	41.4	91.8	0.0
Aug	3	Late	1.05	3.90	42.9	97.5	0.0
Sep	1	Late	1.00	3.67	36.7	113.9	0.0
Sen	2	Late	<u>0 97</u>	3.52	7.0	241	70

ETc, Peff and Net IWR

Other Irrigation Water Requirements

Land preparation requirements(LP) LP for paddy

LP = saturation water requirements[Dss] + standing water requirements[Dst] Dss =(n-Pv)*D/100 (Soil saturation requirements) Dst =5 -10 cm (Standing water requirement) LP for paddy in Thailand 200-350 mm/2 weeks LP for upland crops = 50 mm.

Leaching Requirements (LR)

LR = Dd/Di LR=ECw/ECd = ECw/[5ECe-ECw] Dd = depth of drainage water [mm] Dw = depth of irrigation water [mm] ECw = electrical conductivity of irrigation water [dS/cm] ECe = electrical conductivity of saturation extract at which no yield loss occurred. [dS/cm], [1 siemen/cm = 1 mho/cm] Water applied = Crop water requirements/[1-LR]

ETc under soil water stress conditions

ETa = Ks.ETc

- ETa = Actual crop evapotranspiration under soil water stress [mm/day]
- Kc = crop coefficient
- ETo = reference crop evapotranspiration [mm/day]
- Ks = water stress coefficient

Table 8 Ranges of maximum effective rooting depth (Z_r), and soil water depletion fraction for no stress (p), for common crops

		Maximum Root Depth ¹	Depletion Fraction ² (for ET ≈ 5 mm/day)
Cro	p	(m)	р
a. Small Vegetables			
Broccoli		0.4-0.6	0.45
Brussel Sprouts		0.4-0.6	0.45
Cabbage		0.5-0.8	0.45
Carrots		0.5-1.0	0.35
Cauliflower		0.4-0.7	0.45
Celery		0.3-0.5	0.2
Garlic		0.3-0.5	0.3
Lettuce		0.3-0.5	0.3
Onions			
	- dry	0.3-0.6	0.30
	- green	0.3-0.6	0.30
	- seed	0.3-0.6	0.35
Spinach		0.3-0.5	0.20
Radishes		0.3-0.5	0.30

Soil Properties

	Soil Properties on Water Holding Capacity							
Soil types	FC (% d	ry mass)	PWP (% (dry mass)	mass) Porosity(n, %)		Apparent Specific Gravity(As)	
	Range	Mean	Range	Mean	Range	Mean	Range	Mean
Sand	6-12	9	2-6	4	32-42	38	1.55 – 1.80	16.5
Sandy loam	10-18	14	4-8	6	40-47	43	1.40-1.60	1.50
Loam	18-26	22	8-12	10	43-49	46	1.35-1.50	1.40
Clay loam	23-31	27	11-15	13	47-51	49	1.30-1.40	1.35
Silty clay	27-35	31	13-17	15	49-53	51	1.25-1.35	1.30
Clay	31-39	36	15-19	17	51-55	53	1.20-1.30	1.25

Table A2. Horton's Initial Infiltration by Soil Type

Soil Type	<u>(in/hr)</u>	(mm/hr)
Dry sandy soils with little or no vegetation	5.0	127
Dry loam soils with little or no vegetation	3.0	76.2
Dry clay soils with little or no vegetation	1.0	25.4
Dry sandy soils with dense vegetation	10.0	254
Dry loam soils with dense vegetation	6.0	152
Dry clay soils with dense vegetation	2.0	51
Moist sandy soils with little or no vegetation	1.7	43
Moist loam soils with little or no vegetation	1.0	25
Moist clay soils with little or no vegetation	0.3	7.6
Moist sandy soils with dense vegetation	3.3	84
Moist loam soils with dense vegetation	2.0	5.1
Moist clay soils with dense vegetation	0.7	18

Infiltration Rate

Horton's Final Infiltration Rate also varies with the types of soil. Table A3 contains final infiltration rates suggested by Akan (1993), and others:

able Act monton of man minimation rate by con rype
--

	Final Infiltration Rate				
Soil Type	(in/hr)	<u>(mm/hr)</u>			
Clay loam, silty clay loam, sandy clay, silty clay, clay	0.01 - 0.08	0.25 - 2.0			
Sandy clay loam	0.06 - 0.12	1.57 - 3.1			
Silt loam, loam	0.15 - 0.30	3.8 - 7.6			
Sandy loam	0.43 - 0.86	11 - 22			
Loamy sand	1.2 - 2.4	30 - 60			
Sand, ,	4.7 - 9.3	119 - 236			
The final infiltration rate is the saturated hydraulic conductivity rate of the soil.					

Akan, A. O.(1933), Urban Stormwater Hydrology: A Guide to Engineering Calculations. Lancaster. PA: Technomic Publishing Co., Inc.

63

Soil Data for non-rice

🛞 Soil - D:\Training\00-Bhutan training 21-25 May	2018\Bhutan-Data	\Soils\FAO	MEDIUM.SOI 🗖 🗉 🖾
Soil name	Medium (loam)		
General soil data		1 ()	
Total available soil mois	sture (FC - WP)	290.0	mm/meter
Maximum rain	infiltration rate	40	mm/day
Maximur	n rooting depth	900	centimeters
Initial soil moisture depleti	ion (as % TAM)	0	%
Initial availab	le soil moisture	290.0	mm/meter

Soil data for Rice

Soil - L:\2018-Bhutan 21-25May\Bhutan-Data\Soi	Is\FAO\H	EAVY.SOI 🗖 🖻 🖾
Soil name Heavy (clay)		
General soil data		
Total available soil moisture (FC - WP)	200.0	mm/meter
Maximum rain infiltration rate	40	mm/day
Maximum rooting depth	900	centimeters
Initial soil moisture depletion (as % TAM)	0	%
Initial available soil moisture	200.0	mm/meter
Additional soil data for rice calculations		
Drainable porosity (SAT - FC)	6	%
Critical depletion for puddle cracking	0.60	fraction
Maximum Percolation rate after puddling	3.4	mm/day
Water availability at planting	200	mm WD 💌
Maximum waterdepth	50	mm

Irrigation Scheduling Simulation

Irrigation scheduling can be determined from the soil moisture balance calculation based on the daily accounting of all ingoing and outgoing water in the root zone under the given irrigation scheduling criteria.

Soil moisture balance equation

$\theta(t)=\theta(t-1)-ETa(t)+P(t)+I(t)-L(t)$

θ= soil moisture in the root zone[mm]
ETa = actual ET[mm]
P = rainfall[mm]
I = irrigation water applied[mm]
L = water losses due to runoff and deep percolation during irrigation water application[mm]
t, t-1= day t and t-1

Note that the terms, sub-surface flow and capillary rise, are omitted in the above equation, due to small values in most cases.

Alternatively the above equation can be rewritten in term of soil moisture depletion (SMD) for Ks calculation.

SMD(t)=SMD(t-1)+ETa(t)-P(t)-I(t)+L(t)

Water Stress \rightarrow ETa \rightarrow Yield Response to Water

Scheduling criteria for non-rice crop

A.Irrigation timing

(1) Irrigate at user defined timing intervals [x days]

(2) Irrigate at critical depletion [100% of RAW]

(3) Irrigate at below or above critical depletion [x% of RAW]

(4) Irrigate at fixed intervals per stage [10 days in each stage]

(5) Irrigate at fixed depletion [40 mm]

(6) Irrigate at given ETc reduction per stage [10% in each stage]

(7) Irrigate at a given yield reduction [10%]

(8) No irrigation (rainfed)

B.Irrigation application

- (1) User defined application depth [y mm]
- (2) Refill soil to FC [100% FC]
- (3) Refill soil below or above FC [y% FC]
- (4) Fixed application depth [40 mm]

Scheduling options for rice (1)General settings for Land Preparation (LP)

Normal percolation rates are 1 to 3 mm/day Maximum percolation rate(puddled soil) = Maximum percolation rate(non-puddled soils) ^ 0.33 (FAO default) (Maximum percolation rate(non-puddled soils) = Maximum infiltration rate) [CROPWAT sets the maximum percoration rate =3.4 mm/day]

Daily decrease in max. percolation rate during puddling Nonlinear = [1/days puddling]*LN(max.percolation rate after puddling/max.percolation rate of non-puddling]FAO default Linear: (Max. percolation rate after puddling – Max.percolation rate of nonpuddling)/days puddling

71

(2) SCHEDULING PRE PUDDLING OPTIONS - RICE

Soaking requirement on day 1 + [10] cm (default =10)

Irrigation timing options

- Irrigation at fixed percentage desaturation [100 %]
 [0% = Saturated conditions, 100% = Field capacity]
- Irrigation at fixed percentage depletion of Field Capacity [20%] (NOT % of RAW, since this is the pre-puddling stage, no crop yet)

Irrigation application options

- Fixed application depth [50 mm]
- Refill to fixed percentage of saturation [100 %]

(3) SCHEDULING PUDDLING OPTIONS - RICE

Irrigation timing options

- Irrigate at fixed mm water depth [0 mm]
- Irrigation at fixed percentage desaturation [20%]

Irrigation application options

- Refill to fixed water depth [50 mm]
- Refill to fixed percentage of saturation [100 %]
- Fixed application depth [50 mm]

(4) Schedule options - Rice

IRRIGATION TIMING OPTIONS

- Irrigate at user defined intervals [Option Table]
- Irrigate at fixed water depth [5 mm]
- Irrigate at fixed % desaturation [100%=FC]
- Irrigate at fixed % of critical depletion [100 %]
 [x% of RAW, No stress if x<100%, Stress if x>100%]
- Irrigate at fixed WD/desaturation/critical depletion per stage (initial, development, midseason, late season) [0 mm]
- Irrigate at fixed interval per stage (Suitable in case of rotational water distribution) [10 days]
- Irrigate at given ETc reduction per stage [10 %]
- Irrigate at given yield reduction [10 %] (Deficit irrigation)
- Irrigate continuously [9 mm/day]
- No irrigation (rainfed)

IRRIGATION APPLICATION OPTIONS

- User defined application depth [Option Table]
- Refill to fixed water depth [10 mm]
- Refill to or below saturation [100%=Saturation]
- Refill soil to or below field capacity [100%=Field capacity]
- Refill to fixed WD/saturation/FC per stage [100 mm]
- Fixed application depth [40 mm]

IRRIGATION EFFICIENCY OPTION [70 %]

Soil water balance with stress during flowering stage of cotton in Turkey

TABLE 24 Seasonal yield response functions from FAO Irrigation and Drainage Paper No. 33.

Crop	к _у	Crop	Ку
Alfalfa	1.1	Potato	1.1
Banana	1.2-1.35	Safflower	0.8
Beans	1.15	Sorghum	0.9
Cabbage	0.95	Soybean	0.85
Citrus	1.1-1.3	Spring Wheat	1.15
Cotton	0.85	Sugarbeet	1.0
Grape	0.85	Sugarcane	1.2
Groundnet	0.70	Sunflower	0.95
Maize	1.25	Tomato	1.05
Onion	1.1	Watermelon	1.1
Peas	1,15	Winter wheat	1.05
Pepper	1.1		77

	Yied	Res	ponse	Factor	(Ky)
--	------	-----	-------	--------	------

	Ve	getative perio	d (1)	Flowering	Yield	Ripening	Total
Сгор	early (1a)	late (1b)	total	period (2)	formation (3)	(4)	growing period
Alfalfa			0.7-1.1				0.7-1.1
Banana					10		1.2-1.35
Bean			0.2	1.1	0.75	0.2	1.15
Cabbage	0.2				0.45	0.6	0.95
Citrus							0.8-1.1
Cotton			0.2	0.5		0.25	0.85
Grape							0.85
Groundnut			0.2	0.8	0.6	0.2	0.7
Maize			0.4	1.5	0.5	0.2	1.25
Onion			0.45		0.8	0.3	1.1
Pea	0.2			0.9	0.7	0.2	1.15
Pepper							1.1 ⁷⁸

ETo Rain	station station	CHANDRAG	ÀDHI-Nepε ÀADHI-Nepε	Cra Sa	p BANANA il Medium	Alstyear (loam)		Planting Harvest	date 17/0 date 11/0	15	Yield red.	
Table form C Irrigat Daily	nat tion sch soil mo	edule isture balanc	:e	Appl F	Timing: No lication: - ield eff. 70	o irrigation) %	(rainfed)					
Date	Day	Stage	Rain	Ks	Eta	Depl	Net Irr	Deficit	Loss	Gr. Irr	^	
			mm	fract.	mm/day	%	mm	mm	mm	mm		
7 May	1	Init	29.5	1.00	2.7	3	0.0	2.7	0.0	0.0		Bananal
8 May	2	Init	0.0	1.00	2.7	6	0.0	5.4	0.0	0.0		
19 May	3	Init	0.0	1.00	2.7	9	0.0	8.1	0.0	0.0		
20 May	4	Init	0.0	1.00	2.7	12	0.0	10.8	0.0	0.0		scheouiino
1 May	5	Init	0.0	1.00	2.5	15	0.0	13.3	0.0	0.0		9
2 May	6	Init	0.0	1.00	2.5	17	0.0	15.8	0.0	0.0		Dainfad
3 May	7	Init	41.4	1.00	2.5	3	0.0	2.5	0.0	0.0		Rainieg.
4 May	8	Init	0.0	1.00	2.5	5	0.0	5.0	0.0	0.0		
25 May	9	Init	0.0	1.00	2.5	8	0.0	7.6	0.0	0.0		Madium aa
26 May	10	Init	0.0	1.00	2.5	11	0.0	10.1	39.9	0.0		iviedium so
7 May	11	Init	41.4	1.00	2.5	3	0.0	2.5	0.0	0.0	~	
<u></u>	- 10	1 1 5		4.00			0.0	<u> </u>				SCS Peff
- TOTAIS -	Ρ	Total gr Total Total irri Actual wate otential wate	oss irrigatio net irrigatio gation losse r use by cro r use by cro	n 0.0 n 0.0 s 0.0 p 653 p 880	mm mm .1 mm .4 mm		Mı Actual in	Tot Effectiv Total oist deficit : rrigation re	tal rainfall ve rainfall rain loss at harvest quirement	2278.7 423.4 1855.3 229.8 457.0		
Yield re	Effi Defi eduction	ciency irriga ciency irriga s	tion schedul tion schedul	e - e 25.8 A	% } %	в	C	Effic	iency rain	18.6 eason	%	
		Beduct	ions in FTc	0.0		5.9	57.6	75	4	25.8 %	6	
		Yield resp	onse factor	1.0	0	1.00	1.00	1.	00	1.00		
		Yiel	d reduction	0.0	-	5.9	57.6	75	.4	%	6 _	
	Cur	nulative viel	d reduction	0.0		59	60.1	90	2	25.8 %	6	

Banana1 scheduling - Rainfed, Medium soil, SCS Peff

ETo	station	CHANDRAG	GADHI-Nepa	Cror	Rice			Plantin	n date	17/05	;	Yield	red
Bain	station		GADHI-Nepa	Soi	Heavy	(clav)		Harves	s	13/09	3	0.0 %	6
Schodulin	a critoria	1			1	()/				Long and			
Schedulin	iy ciliena	Pre p	ouddling		Р	uddling			Gr	owth s	stages		
liming Applicatio	on	rrigate at fixed Refill to fixed	l % depletio % saturatio	n of FC n	Irrigate a Refill to	t fixed mm fixed wate	waterdepth r depth	-	No irrigati	on (raiı	nfed)		
Table form	mat												
Irriga	ation sch	edule	C Daily	soil moisture	balance		Field e	efficiency 7	0 %	So	oaking o	lepth 0.5	т
Date	Day	Stage	Rain	Ks	Eta	Puddl	Percol.	Depl.SM	Net Gif	t I	Loss	Depl.SA1	r
			mm	fract.	%	state	mm	mm	mm	1	mm	mm	
27 Apr	-19	PrePu	16.0	1.00	100	Prep	10.7	0	20.4	1000	0.0	20.4	
12 May	-4	Puddl	0.0	1.00	100	Prep	0.0	7	74.0		0.0	24.0	
14 May	-2	Puddl	0.0	1.00	100	OK	15.0	0	50.9		0.0	0.9	
13 Sep	End	End	33.8	1.00	100	OK	2.4	0					
- Totals		Total	gross irriga al net irriga	tion 207. tion 145.	6 mm 1 mm			- Effe	Fotal rain	nfall Ifall	1974.5 1027.3	mm	
– Totals		Total ; Tot Total ir Total per	gross irriga al net irriga rigation los colation los	tion 207. tion 145. ses 0.0 sses 517.	6 mm 1 mm mm 9 mm			- Effe To	Fotal rain ctive rain tal rain l	nfall nfall oss	1974.5 1027.3 947.3	mm mm mm	
– Totals		Total ; Tot Total ir Total per Actual wa Potential wa	gross irriga al net irriga rigation los colation los ter use by ter use by	tion 207. tion 145. ses 0.0 sses 517. crop 525. crop 525.) mm 1 mm 1 mm 2 mm 1 mm 1 mm		Actua	- Effe To Moist defic	Fotal rain ctive rain tal rain l it at harv requirem	nfall nfall oss vest nent	1974.5 1027.3 947.3 229.8 -501.8	mm mm mm mm	
_ Totals	E	Total Tot Total ir Total per Actual wa Potential wa fficiency irrig	gross irriga al net irriga rigation los colation los ter use by ter use by jation sche	tion 207.1 tion 145. ses 0.0 sses 517. crop 525. crop 525. dule 100.1	5 mm 1 mm 9 mm 1 mm 1 mm 1 mm		Actua	Effer To Moist defic I irrigation Ef	Fotal rain ctive rain tal rain l it at harv requirem ficiency i	nfall nfall oss vest nent rain	1974.5 1027.3 947.3 229.8 -501.8 52.0	mm mm mm mm	
⊤ Totals	E	Total Tot Total ir Total per Actual wa Potential wa fficiency irrig eficiency irrig	gross irriga al net irriga rigation los colation los ter use by ter use by pation sche pation sche	tion 207. tion 145. ses 0.0 sses 517. crop 525. crop 525. dule 100. dule 0.0	; mm 1 mm 9 mm 1 mm 1 mm 1 % %		Actua	Effe To Moist defic I irrigation Ef	Fotal rain ctive rain tal rain l it at harv requirem ficiency f	nfall nfall oss vest nent rain	1974.5 1027.3 947.3 229.8 -501.8 52.0	mm mm mm mm	
☐ Totals	E De eduction	Total ; Tot Total ir Total per Actual wa Potential wa fficiency irrig	gross irriga al net irriga rigation los colation los ter use by ter use by pation sche pation sche	tion 207. tion 145. ses 0.0 ses 517. crop 525. crop 525. dule 100.0) mm 1 mm mm) mm 1 mm 1 mm 1 % %		Actua	- Effe To Moist defic I irrigation Ef	Fotal rain ctive rain tal rain l it at harv requirem ficiency l	nfall nfall oss vest nent rain	1974.5 1027.3 947.3 229.8 -501.8 52.0	mm mm mm mm %	
☐ Totals	E De	Total Tot Total ir Total per Actual wa Potential wa fficiency irrig sficiency irrig	gross irriga al net irriga rigation los colation los ter use by ter use by jation sche jation sche Stagela	tion 207.1 tion 145. sses 0.0 sses 517. crop 525. crop 525. dule 100.1 dule 0.0	5 mm 1 mm 9 mm 1 mm 1 mm 1 % %	В	Actua	Effe To Moist defic I irrigation Ef	Fotal rain ctive rain tal rain l it at harv requirem ficiency p	nfall nfall oss vest nent rain Sea	1974.5 1027.3 947.3 229.8 -501.8 52.0	mm mm mm %	
☐ Totals	E De	Total i Total ir Total per Actual wa Potential wa fficiency irrig ficiency irrig	gross irriga al net irriga rigation los colation los ter use by ter use by ation sche jation sche Stagela luctions in	tion 207. tion 145. sses 0.0 sses 517. crop 525. crop 525. dule 100. dule 0.0 bel A ETC 0.1	6 mm 1 mm 9 mm 1 mm 1 mm 1 % %	B 0.0	Actua C 0.0	Effer To Moist defic I irrigation Ef	Fotal rain ctive rain tal rain l it at harv requirem ficiency n D 0.0	ıfall ıfall oss vest rent rain Sez	1974.5 1027.3 947.3 229.8 -501.8 52.0 2500	mm mm mm %	
☐ Totals	E De	Total i Total ir Total per Actual wa Potential wa fficiency irrig fficiency irrig sis Red Yield re	gross irriga al net irriga rigation los colation los ter use by ter use by jation sche jation sche Stagela luctions in esponse fai	tion 207. tion 145. sses 0.0 sses 517. crop 525. crop 525. dule 100. dule 0.0 bel A ETC 0.1 ctor 1.1	6 mm 1 mm 9 mm 1 mm 1 mm 1 mm 9 % %	B 0.0 1.09	Actua C 0.0 1.3	Effer To Moist defic I irrigation Ef	Fotal rain ctive rain tal rain l it at harv requirem ficiency f D 0.0 0.50	nfall Infall oss vest teent rain Sea	1974.5 1027.3 947.3 229.8 -501.8 52.0 2500	mm mm mm %	
☐ Totals	E De	Total i Total ir Total per Actual wa Potential wa fficiency irrig fficiency irrig sficiency irrig sficiency irrig sficiency irrig	gross irriga al net irriga rigation los colation los ter use by ter use by jation sche jation sche Stagela luctions in esponse far Yield reduc	tion 207. tion 145. sses 0.0 sses 517. crop 525. crop 525. dule 100. dule 0.0 bel A ETC 0.1 ctor 1.1 tion 0.1	6 mm 1 mm 9 mm 1 mm 1 mm 1 mm 2 %	B 0.0 1.09 0.0	Actua C 0.0 1.3 0.0	Effer To Moist defic I irrigation Ef	Fotal rain ctive rain tal rain l it at harv requirem ficiency f D 0.0 0.50 0.0	nfall Infall oss vest nent rain Sea	1974.5 1027.3 947.3 229.8 -501.8 52.0 9500 0.0 1.10 0.0	mm mm mm % %	

Rice scheduling – Rainfed, Clay, Empirical Peff

Rice scheduling – Rainfed, Clay, Empirical Peff

Cropping pattern

Cropping pattern - I:\2018-Bhutan 21-25May\Bhutan-Da

Cropping pattern name

۲

Training cropwat

Scheme water supply

SCHEME SUPPLY

ETo station: CHANDRAGADHI-Nepal Rain station: CHANDRAGADHI-Nepal-8 Cropping pattern: Training cropwat

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Precipitation deficit 1. Rice	0.0	0.0	0.0	49.8	196.0	0.9	0.0	0.0	0.0	0.0	0.0	0.0
 BANANA 1st year CABBAGE Crucifers MAIZE (Grain) Sugarcane (Ratoon) 	70.2 0.0 0.0 80.2	75.7 0.0 0.0 81.6	127.8 0.0 0.0 121.8	49.3 0.0 0.0 99.0	0.0 0.0 0.0 8.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	6.4 7.0 0.0 36.3	63.6 0.0 0.0 94.8	57.9 0.0 0.0 75.3
Net scheme irr.req. in mm/day in mm/month in l/s/h	1.0 30.1 0.11	1.1 31.5 0.13	1.6 49.9 0.19	1.3 39.6 0.15	1.3 40.9 0.15	0.0 0.2 0.00	0.0 0.0 0.00	0.0 0.0 0.00	0.0 0.0 0.00	0.3 9.2 0.03	1.1 31.7 0.12	0.9 26.6 0.10
Irrigated area (% of total area)	40.0	40.0	40.0	60.0	40.0	20.0	0.0	0.0	0.0	50.0	40.0	40.0
Irr.req. for actual area (l/s/h)	0.28	0.33	0.47	0.25	0.38	0.00	0.00	0.00	0.00	0.07	0.31	0.25

œ				Sche	eme Suppl	у						
ETo station CHANDRAGADHINep: Rain station CHANDRAGADHINep:												Training cropwat
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Precipitation deficit												
1. Rice	0	0	0	49.8	196	0.9	0	0	0	0	0	0
2. BANANA 1st year	70.2	75.7	127.8	49.3	0	0	0	0	0	6.4	63.6	57.9
3. CABBAGE Crucifers	0	0	0	0	0	0	0	0	0	7	0	0
4. MAIZE (Grain)	0	0	0	0	0	0	0	0	0	0	0	0
5. Sugarcane (Ratoon)	80.2	81.6	121.8	99	8.5	0	0	0	0	36.3	94.8	75.3
Net scheme irr.req.												
in mm/day	1	1.1	1.6	1.3	1.3	0	0	0	0	0.3	1.1	0.9
in mm/month	30.1	31.5	49.9	39.6	40.9	0.2	0	0	0	9.2	31.7	26.6
in l/s/h	0.11	0.13	0.19	0.15	0.15	0	0	0	0	0.03	0.12	0.1
Irrigated area	40	40	40	60	40	20	0	0	0	50	40	40
(% of total area)												
Irr.req. for actual area	0.28	0.33	0.47	0.25	0.38	0	0	0	0	0.07	0.31	0.25
(l/s/h)												

Summary Main Functions of CROPWAT 8

- 1. Calculation of ETo from climatic data.
- 2. Estimation of effective rainfall
- 3. Derivation of crop factor (Kc)
- 4. Calculation of ETc and Net IWR for each crop
- 5. Input soil properties
- 6. Irrigation Scheduling Simulation
- Estimation of scheme water supply from defined cropping pattern

The end of Crop Water Requirements & Irrigation Scheduling with CROPWAT 8.0

Thank you

Appendix A

Table A1 – Length of Crop Development Stages of Selected Field crops Table A2 – Crop Coefficient (Kc) Table A3 – Rooting Depth(D)-Depletion Fraction(p)-RAW Table A4 – Yield Response Factor (Ky)

Crop	Init.	Devel	Mid	Late	Total	Plant Date	Region
Artichoke	40	40	250	30	360	Apr (1 yr)	California
	20	40	220	30	310	May (2 yr)	(cut in May)
Beans	20	30	30	10	90	Fcb/Mar	Calif., Mediterranean
(green)	15	25	25	10	75	Aug/Scp	Calif., Egypt, Lebanon
Bcans (dry)	20	30	40	20	110	May/June	Continental Climates
	15	25	35/50	20	95	June	Pakistan, Calif.
Bcets	15	25	20	10	70	Apr/May	Mcditerranean
	25	30	25	10	90	Fcb/Mar	Mcditerranean & Arid
Carrots	20	30	50/30	20	100	Oct/Jan	Arid climate
	30	40	60	20	150	Feb/Mar	Mediterranean
Castor beans	25	40	65	50	180	March	(Semi)Arid Climates
Celery	25	40	95	20	180	Oct	(Scmi)Arid
	25	40	45	15	125	April	Mediterranean
Colton	30	50	60	55	195	Mar;Apr/May	Egypt; Pakistan
	30	50	60	55	195	Sept	Yemen
	30	50	55	45	180	April	Texas
Crucifers	20	30	20	10	80	April	Mediterranean
	25	35	25	10	95	February	Mediterranean
	30	35	90	40	195	Oct/Nov	Mediterranean
Cucumber	20	30	40	15	105	June/August	Arid Region
	25	35	50	20	130	Nov; Fcb	Arid Region
Egg plant	30	40	40	20	130	October	Arid Region
	30	45	40	25	140	May/June	Mediterranean
Flax	25	35	50	40	150	April	Europe
	30	40	100	50	220	October	Arizona
Grains	20	30	60	40	150	April	Mediterranean
(small)	25	35	65	40	165	Oct/Nov	Pakistan; Arid Reg.
Groundnut	25	35	45	25	130	Dry season	West Africa
	35	45	35	25	140	May/June	Mediterranean
Lontil	20	30	60	40	150	April	Europe
	25	35	70	40	170	Oct/Nov	Arid Region
Lettuce	20	30	15	10	75	April .	Mediterranean
	30	40	25	10	105	Nov/Jan	Mediterranean
	25	35	30	10	100	Oct/Nov	Arid Region
Maizc (swcct)	20 20 20	20 25 30	30 25 50/30	10 10 10	80 80 90	March May/June Oct/Dec	Philippines Mediterranean Arid Climate
Maize (grain)	30 25 20 20 30	50 40 35 35 40	60 45 40 40 50	40 30 30 30 30 30	180 140 125 125 150	April Dec/Jan June October April	East Africa (alt.) Arid Climate Nigeria (humid) India (dry, cool) Spain (spring, sum.)
Melons	25	35	40	20	120	May	Mediterrancan
	30	45	65	20	160	Dec/Jan	Arid Region
Millet	15	25	40	25	105	June	Pakistan
	20	30	55	35	140	April	Central USA

Table A1 Length of Crop Development Stages of Selected Field Crops

Crop	Init.	Devel	Mid	Late	Total	Plant Date .	Region
Onion (dry)	15	25	70	40	150	April	Mediterrancan
	20	35	110	45	210	October	Arid Region
Onion	25	30	10	5	70	April/May	Mediterrancan
(green)	20	45	20	10	95	October	Arid Region
Peas	15	25	35	15	90	May	Europe
	20	30	35	15	100	March/April	Mediterrancan
Peppers	25/30	35	40	20	125	April/June	Europe and Medit.
	30	40	110	30	210	October	Arid Region
Potato	25	30	30/45	30	115/130	Jan/Nov	(Scmi)Arid Climate
	25	30	45	30	130	May	Continental Climate
	30+15	35	50	30	145	April	Europe
Radish	10	10	15	5	40	March/April	Mcdit.; Europe
	10	10	15	5	40	Winter	Arid Region
Safflower	20	35	45	25	125	April	California, USA
	35	55	60	40	190	Oct/Nov	Arid Region
Sorghum	20	35	40	30	130	May/June	USA, Pakis., Mcd.
	20	35	45	30	140	March/April	Arid Region
Soybeans	20	30/35	60	25	140	May	Central USA
	20	25	75	30	150	June	Japan
Spinach	20	20	25	5	70	Apr; Sep/Oct	Mediterrancan
	20	30	40	10	100	November	Arid Region
Squash	20	30	30	20	100	March, Aug	Meditorrancan
(pumpkin)	25	35	35	25	120	June	Europe
Squash	25	35	25	15	100	April	Medit.; Arid Reg.
(zucchini)	20	30	25	15	90	May/June	Medit.; Europe
Sugarbeet	45	75	80	30	230	November	Mediterranean
	25	35	50	50	160	May	Mediterranean
	35	60	70	40	205	November	Arid Regions
Sunflower	25	35	45	25	130	April/May	Mcdit.; California
Tomato	30	40	40	25	135	January	Arid Region
	35	45	70	30	180	Oct/Nov	Arid Region
	30	40	45	30	145	April/May	Mediterrancan
Wheat/ Barlcy	15 20 15	25 25 30	50 60 65	30 30 40	120 135 150	November March/April July	Central India 35-45 °L East Africa
Winter Wheat	30	140	40	30	240	November	Mediterranean
From FAO In	rigation an	d Drainag	ge Paper 2	4, Table	22.		

Table A1(Cont') Length of Crop Development Stages of Selected Field Crops

		Cr	op development st	ages		Total
CROP	Initial	Crop develop- ment	Mid- season	Late season	At harvest	period
Banana tropical subtropical	0.4-0.5 0.5-0.65	0.7-0.85 0.8-0.9	1.0-1.1 1.0-1.2	0.9-1.0 1.0-1.15	0.75-0.85 1.0-1.15	0.7-0.8 0.85-0.95
Bean greeu	0.3-0.4	0.65-0.75	0.95-1.05	0.9-0.95	0.85-0.95	0.85-0.9
dry	0.4-0.5	0.7-0.8	0.95-1.1	0.9-1.0	0.8-0.95	0.7-0.8
Catton	0.4-0.5	0.7-0.8	1.05-1.25	0.8-0.9	0.65-0.7	0.8-0.9
Crean	0 35-0.55	0.6-0.8	0.7-0.9	0.6-0.8	0.55-0.7	0.55-0.75
Groundaut	0.4-0.5	0.7-0.8	0.95-1.1	0.75-0.85	0.55-0.6	0.75-0.8
Maize sweet grain	0.3-0.5 0.3-0.5*	0.7-0.9 0.7-0.85*	1.05-1.2 1.05-1.2*	1.0-1.15 0.8-0.95	0.95-1.1 0.55-0.6*	0.8-0.95 0.75-0.9*
Onion dry	0.4-0.6	0.7-0.8 0.6-0.75	0.95-1.1 0.95-1.05	0.85-0.9 0.95-1.05	0.75-0.85 0.95-1.05	0.8-0.9 0.65-0.8
Page fresh	0.4-0.5	0.7-0.85	1.05-1.2	1.0-1.15	0.95-1.1	0.8-0.95
Ponner, fresh	0.3-0.4	0.6-0.75	0.95-1,1	0.85-1.0	0.8-0.9	0.7-0.8
Pototo	0.4-0.5	0.7-0.8	1.05-1.2	0.85-0.95	0.7-0.75	0.75-0.9
Pice	1.1-1.15	1.1-1.5	1.1-1.3	0.95-1.05	0.95-1.05	1.05-1.2
Safflower	0.3-0.4	0.7-0.8	1.05-1.2	0.65-0.7	0.2-0.25	0.65-0.7
Sorghum	0.3-0.4	0.7-0.75	1.0-1.15	0.75-0.8	0.5-0.55	0.75-0.85
Sovbean	0.3-0.4	0.7-0.8	1.0-1.15	0.7-0.8	0.4-0.5	0.75-0.9
Sugarbeet	0.4-0.5	0.75-0.85	1.05-1.2	0.9-1.0	0.6-0.7	0.8-0.9
Sugarcane	0.4-0.5	0.7-1.0	1.0-1.3	0.75-0.8	0.5-0.6	0.85-1.05
Sunflower	0.3-0.4	0.7-0.8	1.05-1.2	0.7-0.8	0.35-0.45	0.75-0.85
Tobacco	0.3-0.4	0.7-0.8	1.0-1.2	0.9-1.0	0.75-0.85	0.85-0.95
Tomato	0.4-0.5	0.7-0.8	1.05-1.25	0.8-0.95	0.6-0.65	0.75-0.9
Watermelon	0.4-0.5	0.7-0.8	0.95-1.05	0.8-0.9	0.65-0.75	0.75-0.85
Wheat	0.3-0.4	0.7-0.8	.05-1.2	Ó.65-0.75	0.2-0.25	0.8-0.9
Alfalfa	0.3-0.4				1.05-1.2	0.85-1.05
Citrus clean weeding						0.65-0.75 0.85-0.9
Olive				1		0.4-0.6
irst figure	: Under hi	ngh humidity (RI) w humidity (RI)	1 1min > 70%) and 1min < 20%) and	low wind (U < 5 strong wind (> 5	m/sec). m/sec).	·

Crop	Rooting depth (d)	Fraction (p) of available	Readily available soil water (p.Sa) mm/m ¹					
	m	soil water*	fine	medium	coarse			
Alfalfa	1.0-2.0	0.55	110	75	35			
Banana	0.5-0.9	0.35	70	50	20			
Barley ²	1.0-1.5	0.55	110	75	35			
Beans"	0.5-0.7	0.45	90	65	30			
Beels	0.6-1.0	0.5	100	70	35			
Carrola	0.4-0.5	0.45	. 90	03	30			
Celery	03-05	0.35	40	25	20			
Citrus	1.2-1.5	0.5	100	70	30			
Clover	0.6-0.9	0.35	70	50	20			
Сасао		0.2	40	30	15			
Cotton	1.0-1.7	0.65	130	90	40			
Cucumber	0.7-1.2	0.5	100	70	30			
Dates	1.5-2.5	0.5	100	70	30			
Dec. orchards	1.0-2.0	0.5	100	70	30			
Flax ²	1.0-1.5	0.5	100	70	30			
Grains small ²	0.9-1.5	0.6	120	80	40			
winter ²	1.5-2.0	0.6	120	80	40			
Grapes	1.0-2.0	0.35	70	50	20			
Grass	0.5-1.5	0.5	100	70	30			
Groundnuts	0.5-1.0	0.4	80	55	- 25			
Lettuce	0.3-0.5	0.3	60	40	20			
Maize	1.0-1.7	0.6	120	70	40			
Malage	1015	0.35	70	50	30			
Oliver	12.17	0.55	130	95	45			
Onions	03-05	0.25	50	35	15			
Palm trees	0.7-1.1	0.65	130	90	40			
Peas	0.6-1.0	0.35	70	50	25			
Peppers	0.5-1.0	0.25	50	35	15			
Pincapple	0.3-0.6	0.5	100	65	30			
Potatoes	0.4-0.6	0.25	50	30	15			
Safflower ²	1.0-2.0	0.6	120	80	40			
Sisal	0.5-1.0	0.8	155	110	50			
Sorghum ²	1.0-2.0	0.55	110	75	35			
Soybcans	0.6-1.3	0.5	100	75	35			
Spinach	0.3-0.5	0.2	40	30	15			
Strawberries	0.2-0.3	0.15	30	20	10			
Sugarbeet	0.7-1.2	0.5	100	70	30			
Sugarcane ²	1.2-2.0	0.65	130	90	40			
Sunflower	0.8-1.5	0.45	90	60 .	30			
Sweet potatoes	1.0-1.5	0.65	130 ~	90	40			
lobacco early	0.5-1.0	0.35	/0	50	25			
late	0715	0.05	180	50	40			
Vegetables	0.7-1.5	0.4	40	30	15			
Wheat	10-15	0.55	105	70	35			
ripening	(0.9	180	130	55			
otal available soil v	valer (Sa)		200	140	60			
When ET	crop is 3 mm/day or sm 30%, assuming non-sa	aller increase values by ine conditions (EC _e <	some 30%; when 2 dS/m).	ET _{crop} is 8 mm/day or	more reduce v			

Table A3 Depletion Fraction(p) a	nd Readily Available Water(RAW)
---	---------------------------------

	Ve	egetative perio	d (1)	Flowering	Yield	Ripening	Total
Сгор	early (1a)	late (1b)	total	period (2)	formation (3)	(4)	growing period
Alfalfa			0.7-1.1				0.7-1.1
Banana							1.2-1.35
Bean			0.2	1.1	0.75	0.2	1.15
Cabbage	0.2				0.45	0.6	0.95
Citrus							0.8-1.1
Cotton			0.2	0.5		0.25	0.85
Grape							0.85
Groundnut			0.2	0.8	0.6	0.2	0.7
Maize			0.4	1.5	0.5	0.2	1.25
Onion			0.45		0.8	0.3	1.1
Pea	0.2			0.9	0.7	0.2	1.15
Реррег							1.1
Potato	0.45	0.8			0.7	0.2	1.1
Safflower		0.3		0.55	0.6		0.8
Sorghum			0.2	0.55	0.45	0.2	0.9
Soybean			0.2	0.8	1.0		0.85
Sugarbeet beet sugar							0.6-1.0 0.7-1.1
Sugarcane			0.75		0.5	0.1	1.2
Sunflower	0.25	0.5		1.0	0.8		0.95
Tobacco	0.2	1.0			0.5		0.9
Tomato	1		0.4	1.1	0.8	0.4	1.05
Watermelon	0.45	0.7		0.8	0.8	0.3	1.1
Wheat							1.0
winter spring			0.2 0.2	0.6 0.65	0.5		1.15
						· · · · · · · · · · · · · · · · · · ·	

Table A4 Yield Response Factor(Ky)

From FAO Irrigation and Drainage Paper 33, Table 24.