เอกสารประกอบการสอน

วศยธ 323 อุทกวิทยา (Hydrology)

ภาควิชาวิศวกรรมโยธาและสิ่งแวดล้อม คณะวิศวกรรมศาสตร์ มหาวิทยาลัยมหิดล

ผศ. ดร. อารียา ฤทธิมา

LECTURE NOTES EGCE 323 HYDROLOGY

Asst.Prof.Dr.Areeya Rittima

Department of Civil and Environmental Engineering Faculty of Engineering Mahidol University E-mail: areeya.rit@mahidol.ac.th Revised in 2018

LECTURE OUTLINE

Introduction to Hydrology

- Hydrologic Cycle
- Systems Concept
- Hydrologic System Model

HYDROLOGY

- Hydrology is the scientific study of the movement, distribution, and quality of water on earth and other planets, including the water cycle, water resources and environmental watershed sustainability.
- A practitioner of hydrology is a "Hydrologist", working within the fields of earth or environmental science, physical geography, geology or civil and environmental engineering.
- The practical application of hydrology is called "Applied Hydrology".

APPLIED HYDROLOGY

Applied hydrology are found in such tasks as;

- Design and operation of hydraulic structures
- Water supply
- Wastewater treatment and disposal
- Irrigation
- Drainage
- Hydropower generation
- Flood control
- Navigation
- Erosion and sediment control
- Salinity control
- Pollution abatement
- Recreation use of water
- Fish and wildlife protection

APPLIED HYDROLOGY

Branches of Hydrology;Chemical Hydrology

is the study of the chemical characteristics of water.

Ecohydrology

is the study of interactions between organisms and the hydrologic cycle.

Hydrogeology

is the study of the presence and movement of water in aquifers.

Hydroinformatics

is the adaptation of information technology to hydrology and water resources applications.

Hydrometeorology

is the study of the transfer of water and energy between land and water body surfaces and the lower atmosphere.

Surface Hydrology

is the study of hydrologic processes that operate at or near the Earth's surface.

Water on earth exists :

- in a space called Hydrosphere (15 km up into the atmosphere)
- in the crust of the earth (1 km down into the Lithosphere

Water circulates in the hydrosphere through the maze of paths constituting the "**Hydrologic Cycle**".

The area near the surface of the earth can be divided up into 4 parts :

Lithosphere : is the solid rocky crust covering entire planet. It covers the entire surface of the earth from the top to the bottom. Hydrosphere : is composed of all of the water on or near the earth. Biosphere : is composed of all living organisms. Atmosphere : is the body of air which surrounds our planet.

- 79% Nitrogen
- 21% Oxigen
- The small amount remaining is CO₂ and other gases.

Hydrologic Cycle

Describes the continuous movement of water on, above, and below the surface of the earth.

- Hydrologic cycle is also known as water cycle or hydrological cycle.
- Water can change states among liquid, vapor, and ice at various places in the water cycle.
- The cycle has no beginning or end.
- Its processes occur continuously.
- The mass balance of water on earth remains fairly constant over time but the partitioning of the water into the major reservoirs of ice, fresh water, saline water and atmospheric water is variable depending on a wide range of climatic variables.
- The hydrologic cycle is the central focus of hydrology.

PERCIPITATION, DEPOSITION / DESUBLIMATION Water droplets fall from clouds _____ as drizzle, rain, snow, or ice.

ADVECTION

Winds move clouds through the atmosphere.

CONDENSATION, CLOUDS, FOG Water vapor rises and condenses as clouds.

EVAPORATION

Heat from the sun causes water to evaporate.

HYDROSPHERE, OCEANS The oceans contain 97% of Earth's water.

The Water Cycle

Water moves around our planet by the processes shown here. The water cycle shapes landscapes, transports minerals, and is essential to most life and ecosystems on the planet. ACCUMULATION, SNOWMELT, MELTWATER, SUBLIMATION, DESUBLIMATION/DEPOSITION

Snow and ice accumulate, later melting back into liquid water, or turning into vapor.

SURFACE RUNOFF, CHANNEL RUNOFF, RESERVOIRS

Water flows above ground as runoff, forming streams, rivers, swamps, ponds, and lakes.

PLANT UPTAKE, INTERCEPTION, TRANSPIRATION

Plants take up water from the ground, and later transpire it back into the air.

INFILTRATION, PERCOLATION, SUBSURFACE FLOW, AQUIFER, WATER TABLE, SEEPAGE, SPRING, WELL

Water is soaked into the ground, flows below it, and seeps back out enriched in minerals.

VOLCANIC STEAM, GEYSERS, SUBDUCTION

Water penetrates the earth's crust, and comes back out as geysers or volcanic steam

Source: Wikipedia (2018)

Hydrologic Cycle

The water moves from one reservoir to another such as from a river to ocean, or from ocean to the atmosphere by the physical processes of evaporation, condensation, precipitation, infiltration, runoff, and sub-Surface flow.

Surface Runoff

Surface runoff is the excess water flows over the land. It occurs when soil is infiltrated to full capacity.

Transpiration

The evaporation of water from plants through their leave.

Interception

If the surface is covered by dense vegetation, much of precipitation may be held on leaves and plant limbs and stems.

WORLD WATER QUANTITY

Estimated World Water Quantities

Item	Area (10 ⁶ km ²)	Volume (km ³)	Percent of total water	Percent of fresh water	
Oceans	361.3	1,338,000,000	96.5	96.5% of a	ll the earth's water is in the ocean
Groundwater			annaithe des	70.5% OF U	in the editions water is in the ocean
Fresh	134.8	10,530,000	0.76	30.1	1.7% of all the earth's water is in
Saline	134.8	12,870,000	0.93	les in para	the aroundwater.
Soil Moisture	82.0	16,500	0.0012	0.05	
Polar ice	16.0	24,023,500	1.7	68.6	1.79 of all the earth's water is in
Other ice and snow	0.3	340,600	0.025	1.0	the polarices.
Lakes	to the actionph			infiltrated ky	
Fresh	1.2	91,000	0.007	0.26	
Saline		ho parth's wat	or is in the s	urface and	
Marshes	atmospher	ic water system		unace and	
Rivers	140.0	2,120	0.0002	0.000	
Biological water	510.0	1,120	0.0001	0.003	
Atmospheric water	510.0	12,900	0.001	0.04	
Total water	510.0	1,385,984,610	100		
Fresh water	148.8	35,029,210	2.5	100	

Source: Chow et al. (1988)

AVERAGE WATER BALANCE Mahidol University Wisdom of the Land Hydrologic cycle with global annual average water balance 39 Moisture over land 100 Precipitation on land 385 Precipitation 61 on ocean Evaporation from land Surface Evaporation and runoff evapotranspiration Infiltration 424 Evaporation from ocean Soil moisture Subsurface flow Water table Impervious strata 38 Surface outflow Groundwater flow > 1 Groundwater outflow Average Water Balance in 1978

GLOBAL ANNUAL WATER BALANCE

Global Annual Water Balance

		Ocean	Land	
Area (km ²)	State Labore	361,300,000	148,800,000	
Precipitation 100%	(km ³ /yr) (mm/yr) (in/yr)	458,000 1270 50	119,000 800 31	
Evaporation 61%	(km ³ /yr) (mm/yr) (in/yr)	505,000 1400 55	72,000 484 19	
Runoff to ocean 39% Rivers Groundwater Total runoff	(km ³ /yr) (km ³ /yr) (km ³ /yr) (mm/yr) (in/yr)		44,700 2200 47,000 316 12	

Source: Chow et al. (1988)

RESIDENCE TIME: EXAMPLE 1

Estimate the residence time of global atmospheric moisture.

- $T_r = \frac{S}{Q}$
- Tr = Residence time (the average duration for a water molecule to pass through a subsystem of the hydrologic cycle).
- S = Volume of water
- Q = Flow rate
- S = 12,900 km³ (Table)

Q = 458,000 + 119,000
$$\frac{\text{km}^3}{\text{yr}}$$
 (Table)
= 577,000 $\frac{\text{km}^3}{\text{yr}}$

Tr = S/Q = 12,900/577,000 = 0.033 years = 8.2 days

SYSTEM CONCEPT

Global hydrologic cycle is represented in a simplified way by means of "The System Concept"

Most hydrologic system is inherently random, because their major input is precipitation, a highly variable and unpredictable phenomena.

The statistical analysis plays a large role in hydrologic analysis.

Block diagram representation of the global hydrologic system

SYSTEM CONCEPT: EXAMPLE 2

Represent the storm rainfall-runoff process on a watershed as a hydrologic system.

A Watershed as a Hydrologic System

A watershed is the area of land draining into a stream at a given location.

The watershed divide is a line dividing land whose drainage flows toward the given stream from land whose drainage flows away from that stream.

For practical problems, only a few processes of hydrologic cycle are considered at a time, and only considering a small portion of the earth's surface.

Simple Hydrologic System Model

Mass Balance Equation ; I-Q=dS/dt I = Input (volume/time) O = Output (volume/time) dS/dt = Time rate of change of storage

BASIC EQUATION OF HYDROLOGIC CYCLE

Mahidol University Wisdom of the Land

P=Precipitation E=Evaporation T=Transpiration R=Surface Runoff G=Groundwater Flow R_g=Subsurface Flow I=Infiltration S=Storage s=Land Surface g=Groundwater BASIC EQUATION OF HYDROLOGIC CYCLE

• Water Budget in Land Surface $(P+R_1+R_g)-(R_2+E_s+T_s+I)=\Delta S_s$

• Water Budget in Groundwater $(I+G_1)-(G_2+R_g+E_g+T_g)=\Delta S_g$

(2)

(1)

 $P-(R_2-R_1)-(E_s+E_g)-(T_s+T_g)-(G_2-G_1)=\Delta S_s+\Delta S_g **(1)+(2)$

R (Net Surface Flow)= R_2 - R_1 E (Net Evaporation)= E_2 + E_1 T (Net Transpiration)= T_s + T_g G (Net Groundwater Flow)= G_2 - G_1 $\Delta S = \Delta S_s + \Delta S_g$

$P-R-E-T-G=\Delta S$

REFERENCES

Chow, V.T., Maidment, D.R., & Mays, L.W. (1988). Applied hydrology. New York: McGraw-Hill Book Company.

- Conserve-Energy-Future. (2018). *Hydrologic cycle*. Retrieved July 12, 2018 from https://www.conserve-energy-future.com/different-steps-of-thehydrologic-cycle.php.
- Oki, T., & Kanae, S. (2006). Global hydrological cycles and world water resources. *Science*, 313, 1068-1072.
- Wikipedia. (2018). Water cycle. Retrieved July 12, 2018 from
 - https://en.wikipedia.org/wiki/Water_cycle.

LECTURE NOTES EGCE 323 HYDROLOGY

Asst.Prof.Dr.Areeya Rittima

Department of Civil and Environmental Engineering Faculty of Engineering Mahidol University E-mail: areeya.rit@mahidol.ac.th Revised in 2018

Hydrologic Phenomenon

Global Warming and Climate ChangeEl Nino

Hydrologic Phenomenon

Hydrologic phenomenon is an observable movement of water within the water cycle.

- It includes;
- Precipitation
- Extreme Flood
- Severe Drought
- Global warming
- El Nino
- Cyclone
- etc.

Global Warming and Climate Change

Global warming and climate change refer to an increase in average global temperatures. Natural events and human activities are believed to be contributing to an increase in average global temperatures. This is caused primarily by increases in greenhouse gases such as Carbon Dioxide (CO_2).

Source: NASA (2018)

Changes in Carbon Dioxide-Methane-Nitrous Oxide

Source: Mcpherson (2018)

1999-2008 Mean Temperatures

CLIMATE CHANGE

What are the main indicators of Climate Change?

As explained by the US agency, the National Oceanic and Atmospheric Administration (NOAA), there are 7 indicators that would be expected to increase in a warming world and 3 indicators would be expected to decrease.

7 indicators increased;

- Temperature over land
- Temperature over oceans
- Sea level
- Ocean heat content
- Sea surface temperature
- Humidity
- Tropospheric temperature

3 indicators decreased;

- Sea ice
- Glaciers
- Snow covers

Source: NOAA (2015)

In 1970

In 1932

In 1978

In 1910

In 1906

In 1906
EFFECTS OF CLIMATE CHANGE

In 2002

In 2005

SPACE ENERGY IN 100% ATMOSPHERE What does the sun's energy do on earth, before exiting the earth's atmosphere? It fuels practicely except hips providing nearly all of the energy for living things. This energy is also used to move ocean and atmospheric currents, giving us weather and climate.

molecules.

molecules.

El Niño (Spanish name for the male child)

El Nino initially referred to a weak, warm current appearing annually around Christmas time along the coast of Ecuador and Peru and lasting only a few weeks to a month or more.

Every three to seven years, an El Niño event may last for many months, having significant economic and atmospheric consequences worldwide.

During the past forty years, ten of these major El Niño events have been recorded, the worst of which occurred in 1997-1998.

El Niño Years			
1902-1903	1905-1906	1911-1912	1914-1915
1918-1919	1923-1924	1925-1926	1930-1931
1932-1933	1939-1940	1941-1942	1951-1952
1953-1954	1957-1958	1965-1966	1969-1970
1972-1973	1976-1977	1982-1983	1986-1987
1991-1992	1994-1995	1997-1998	

- In the tropical Pacific, trade winds generally drive the surface waters westward.
- The surface water becomes progressively warmer going westward because of its longer exposure to solar heating.
- El Niño is observed when the easterly trade winds weaken, allowing warmer waters of the western Pacific to migrate eastward and eventually reach the South American Coast (shown in orange).
- The cool nutrient-rich sea water normally found along the coast of Peru is replaced by warmer water depleted of nutrients, resulting in a dramatic reduction in marine fish and plant life.

Australia

China

Warm Episode Relationships: Jun-Aug

Droughts in the Western Pacific Islands and Indonesia as well as in Mexico and Central America were the early (and sometimes constant) victims of this El Niño.

North America

South

America

Warm Episode Relationships: Dec-Feb

Upwelling

The transport of deeper water to shallow levels

- One oceanic process altered during an El Niño year is upwelling, which is the rising of deeper colder water to shallower depths.
- The diagram above shows how upwelling occurs along the coast of Peru.
- Nutrient-rich water rises from deeper levels to replace the surface water that has drifted away and these nutrients are responsible for supporting the large fish population commonly found in these areas.

Mixed Layer	
Thermocline	
Deep Water	
Temperature	>

- The thermocline is the transition layer between the mixed layer at the surface and the deep water layer.
- The definitions of these layers are based on temperature.
- The mixed layer is near the surface where the temperature is roughly that of surface water.
- In the thermocline, the temperature decreases rapidly from the mixed layer temperature to the much colder deep water temperature.
- The mixed layer and the deep water layer are relatively uniform in temperature, while the thermocline represents the transition zone between the two.

Non El Niño Years colder water in the eastern tropical Pacific

The plot of average sea surface temperatures from 1949-1993 shows that the average December SSTs were much cooler in the eastern Pacific (less than 22 degrees Celsius) than in the western Pacific (greater than 25 degrees Celsius), gradually decreasing from west to east.

 This is why during most non El Niño years, heavy rainfall is found over the warmer waters of the western Pacific (near Indonesia) while the eastern Pacific is relatively dry.

El Niño Events results from weakening easterly trade winds

 The deeper thermocline limits the amount of nutrient-rich deep water tapped by upwelling processes.

 As the warmer water shifts eastward, so do the clouds and thunderstorms associated with it, resulting in dry conditions in Indonesia and Australia while more flood-like conditions exist in Peru and Ecuador.

 El Niño causes all sorts of unusual weather, sometimes bringing rain to coastal deserts of South America which never see rain during non-El Niño years.

REFERENCES

Mcpherson, G.R. (2018). Climate-change summary and update. Retrieved July 12, 2018 from https://www.guymcpherson.net/summary.html. NASA. (2018). World of change: global temperatures. Retrieved July 12, 2018 from https://earthobservatory.nasa.gov/WorldOfChange/decadaltemp.ph р. NOAA. (2015). 10-key climate indicators all point to same finding: global warming is unmistakable. Retrieved July 12, 2018 from https://www.skepticalscience.com/10-key-climate-indicators-point-tosame-finding-global-warming-is-unmistakable.html. Wikipedia. (2018). Regional effects of global warming. Retrieved July 12, 2018 from https://en.wikipedia.org/wiki/Regional_effects_of_global_warming.

LECTURE NOTES EGCE 323 HYDROLOGY

Asst.Prof.Dr.Areeya Rittima

Department of Civil and Environmental Engineering Faculty of Engineering Mahidol University E-mail: areeya.rit@mahidol.ac.th Revised in 2018

LECTURE OUTLINE

Atmospheric Water

- Atmospheric Circulation
- Water Vapor
- Precipitation
- Evaporation
- Evapotranspiration

HYDROLOGIC CYCLE

ATMOSPHERIC WATER:

Atmospheric Water

- Many meteorological processes occur continuously within the atmosphere.
- The processes of precipitation and evaporation are the most important for hydrology.
- Much of the water precipitated on the land surface is derived from moisture evaporated from the ocean and transported long distances by Atmospheric Circulation.
- The two basic driving forces of atmospheric circulation result from
 - (1) The rotation of the earth
 - (2) The transfer of heat energy between equator and the poles

ATMOSPHERIC WATER: ATMOSPHERIC CIRCULATION

Atmospheric Circulation

- Atmospheric circulation is the large-scale movement of air, and together with ocean circulation is the means by which thermal energy is redistributed on the surface of the Earth.
- The Earth's atmospheric circulation varies from year to year, but the large-scale structure of its circulation remains fairly constant.
- The smaller scale weather systems mid-latitude depressions, or tropical convective cells – atmospheric circulation occurs "randomly.

ATMOSPHERIC WATER: ATMOSPHERIC CIRCULATION

Large Scale Atmospheric Circulation on Earth

 The atmospheric circulation occurs in the troposphere.

- The troposphere ranges in height from about 8 km at the poles to 16 km at the equator.
- The temperature in the troposphere decreases with altitude at a rate varying with the moisture content of the atmosphere.

Source: Wikipedia (2018a)

ATMOSPHERIC WATER: WATER VAPOR

Atmospheric Water

- Atmospheric water mostly exists as a gas or vapor.
- Briefly and locally, it becomes a liquid in rainfall and in water droplets in clouds. or
- It becomes a solid in snowfall, in hail and in ice cystals in clouds.

Water Vapor

- Water vapor is the gaseous phase of water. It is one state of water within the hydrosphere. Water vapor can be produced from the evaporation or boiling of liquid water or from the sublimation of ice.
- The amount of water vapor in the atmosphere is less than 1/100,000 of all waters of the earth, but it plays a vital role in the hydrologic cycle.

ATMOSPHERIC WATER: WATER VAPOR

Vapor Transport Equation

The Reynolds transport equation is the continuity equation for water vapor transport.

$$m_v = \frac{d}{dt} \iiint_{c.v.} q_v \rho_a d \forall + \underset{c.s.}{\iint} q_v \rho_a V.dA$$

$$q_v = \frac{\rho_v}{\rho_a}$$

When

- m_v = Mass Flow Rate of Water Vapor Transport
- q_v = Specific Humidity
- $\rho_{\rm v}\,$ = Density of Water Vapor
- ρ_{α} = Density of Moist Air

WATER VAPOR: VAPOR PRESSURE

WATER VAPOR: DRY AIR

Atmosphere Gas Proportions

- The Earth's atmosphere (or air) is a layer of gases surrounding the planet Earth that is retained by the Earth's gravity.
- It has a mass of about five quadrillion metric tons.
- Dry air contains roughly (by volume) 78.08% nitrogen, 20.95% oxygen, 0.93% argon, 0.038% carbon dioxide, and trace amounts of other gases. Air also contains a variable amount of water vapor, on average around 1%.

WATER VAPOR: VAPOR PRESSURE

Vapor Pressure of Water Vapor, e

 $e = \rho_v R_v T$

T = Absolute Temperature in K R_v = Gas Constant for Water Vapor ρ_v = Density of Water Vapor

Vapor Pressure of Dry Air, p-e

 $p - e = \rho_d R_d T$

T = Absolute Temperature in K R_d = Gas Constant for Dry Air = 287 J/kg.K ρ_d = Density of Dry Air Total Vapor Pressure, p

$$p = e + (p - e) = \rho_v R_v T + \rho_d R_d T$$

$$= \rho_{v} \left(\frac{\kappa_{d}}{0.622} \right) T + \rho_{d} R_{d}$$
$$= \left[\frac{\rho_{v}}{0.622} + \rho_{d} \right] R_{d} T$$

When

$$\rho_a = \rho_d + \rho_v$$

Rewritten in terms of gas constant for moist air, R_{α}

WATER VAPOR: SATURATION VAPOR PRESSURE

The relationship between the gas constants for moist air and dry air is given by;

$$R_{a} = R_{d}(1 + 0.608q_{v})$$

= 287(1 + 0.608q_{v}) J/kg.K

For a given air temperature, there is a maximum moisture content in the air can hold, the corresponding vapor pressure is called "Saturation Vapor Pressure, e,"

At this vapor pressure, the rate of evaporation and condensation are equal.

e_c = Saturation Vapor Pressure in Pascals

WATER VAPOR: SATURATION VAPOR PRESSURE

Over a water surface the saturation vapor pressure is related to the air temperature.

WATER VAPOR: SATURATION VAPOR PRESSURE

Saturated vapor pressure of water vapor over liquid water

Temperature (°C)	Saturated Vapor Pressure (kPa)
-20	125
-10	286
0	611
5	872
10	1227
15	1704
20	2337
25	3167
30	4243
35	5624
40	7378

Source: Chow et al. (1988)

WATER VAPOR: RELATIVE HUMIDITY & SPECIFIC HUMIDITY

The "**Relative Humidity**, **Rh**" is the ratio of the actual vapor pressure to its saturation value at a given air temperature.

The temperature at which air would just become saturated at a given specific humidity is its "**Dew-Point Temperature, Td**"

"Specific Humidity, qv" is approximated by;

$$q_v = 0.622 \frac{e}{p}$$

WATER VAPOR: EXAMPLE 1

At a climate station, air pressure is measured as 100 kPa, air temperature as 20°C, and the wet-bulb or dew point temperature as 16°C. Calculate

(a) vapor pressure
(b) relative humidity
(c) specific humidity
(d) air density

WATER VAPOR: EXAMPLE 1

Solution Saturated vapor pressure at T=20°C :

$$e_{s} = 611 \exp\left(\frac{17.27T}{237.3 + T}\right)$$
$$= 611 \exp\left(\frac{17.27 \times 20}{237.3 + 20}\right)$$

= 2,339 Pa

The actual vapor pressure, e (T=Td=16°C) :

$$e = 611 \exp\left(\frac{17.27T_{d}}{237.3 + T_{d}}\right)$$
$$= 611 \exp\left(\frac{17.27x16}{237.3 + 16}\right)$$
$$= 1,819 \operatorname{Pa}$$

WATER VAPOR: EXAMPLE1

The relative humidity :

$$R_{h} = \frac{e}{e_{s}} = \frac{1,819}{2,339} = 0.78 = 78\%$$

The specific humidity :

$$q_v = 0.622 \frac{e}{p} = 0.622 (\frac{1,819}{100 \times 10^3})$$

= 0.0113 kg water/kg moist air

Air density :

$$\rho_{a} = \frac{p}{R_{a}T} = \frac{100 \times 10^{3}}{289 \times 293} = 1.18 \frac{kg}{m^{3}}$$

$$R_{a} = 287(1 + 0.608q_{v})$$

$$qv = 0.0113$$

$$T = 20^{\circ}C = 20 + 273 \text{ K} = 293 \text{ K}$$

When

WATER VAPOR IN A STATIC ATMOSPHERIC COLUMN

$$\alpha = -\frac{dT}{dz} = Lapse Rate$$

WATER VAPOR IN A STATIC ATMOSPHERIC COLUMN

Precipitable Water

- Precipitable water is the depth of water in a column of the atmosphere, if all the water in that column were precipitated as rain. As a depth, the precipitable water is measured in millimeters or inches. Often abbreviated as "TPW" = Total Precipitable Water.
- In other words, the amount of moisture in an atmospheric column is called "Precipitable Water"

WATER VAPOR IN A STATIC ATMOSPHERIC COLUMN

Consider an element of height dz in a column of horizontal crosssectional area A.

- The mass of air = $\rho_a A dz$
- The mass of water = $\rho_v \rho_a A dz$

The total mass of precipitable water in the column between elevations z1 and z2 is

$$m_p = \int_{z_1}^{z_2} q_V \rho_a Ad_z$$

The integral mp is calculated using intervals of height Δz , each with an incremental mass of precipitable water

 $\Delta m_p = \overline{q}_v \overline{\rho}_a A \Delta z \qquad \overline{q}_v, \ \overline{\rho}_v = \text{the average values of specific humidity and air density over the interval.}$

Calculate the precipitable water in a saturated air column 10 km high above 1 m² of ground surface. The surface pressure is 101.3 kPa, the surface air temperature is 30°C, and the lapse rate is 6.5°C/km.

Elev.	Tempe	rature	Air Pressure	Den	sity	Vapor Pressure	Specific Humidity	Avg. over Increment	Incremental Mass	% of Total Mass
Z	Т	Т	р	ρ _a	$\overline{\rho}_{2}$	е	qv	\overline{q}_{v}	Δm	
(km)	(°C)	(°K)	(kPa)	(kg/ m ³)	(kg/ m³)	(kPa)	(kg/kg)	(kg/kg)	(kg)	(%)
0	30	303	101.3	1.16		4.24	0.0261			
2	17	290	80.4	0.97	1.07	1.94	0.0150	0.0205	43.7	57
4	4	277	63.2	0.79	0.88	0.81	0.0080	0.0115	20.2	26
6	-9	264	49.1	0.65	0.72	0.31	0.0039	0.0060	8.6	11
8	-22	251	37.6	0.52	0.59	0.10	0.0017	0.0028	3.3	4
10	-35	238	28.5	0.42	0.47	0.03	0.0007	0.0012	1.1	2
								Total	77.0	100

$$p_2 = p_1 \left(\frac{T_2}{T_1}\right)^{\frac{g}{\alpha R_\alpha}}$$

 $\mathsf{T}_2=\mathsf{T}_1-\alpha(\mathsf{Z}_2-\mathsf{Z}_1)$

Find temperature at z_2 :

$$T_{2} = T_{1} - \alpha(z_{2} - z_{1}) = 30 - 0.0065(2000 - 0) = 17^{\circ}C = 290 \text{ K}$$

$$z_{1} = 0 \text{ m}, T_{1} = 30 + 273 = 303 \text{ K}$$

$$z_{2} = 2,000 \text{ m}$$

Find pressure at z_2 :

$$\frac{S}{\alpha R_{\alpha}} = \frac{1}{0.0065 \times 287} = 5.2$$

Find air density at z_1 (at the ground) : air density at $z_2 = 0.97$ kg/m³

$$\rho_{a} = \frac{p}{R_{a}T} = \frac{101.3 \times 10^{3}}{287 \times 303} = 1.16 \frac{kg}{m^{3}} \qquad \qquad \overline{\rho}_{a} = (\frac{1.16 + 0.97}{2}) = 1.07 \frac{kg}{m^{3}}$$

Find saturated vapor pressure at z_1 (at the ground) :

$$e = 61 \operatorname{lexp}\left(\frac{17.27T}{237.3 + T}\right) = 61 \operatorname{lexp}\left(\frac{17.27 \times 30}{237.3 + 30}\right) = 4,244 \operatorname{Pa} = 4.24 \operatorname{kPa}$$

The saturated vapor pressure at $z_2 = 2,000$ m where T=17°C, e = 1.94 kPa. The specific humidity at the ground, z_1 surface is

$$q_{v} = 0.622 \frac{e}{p} = 0.622 \times \frac{4.24}{101.3} = 0.026 \frac{kg}{kg}$$
$$\overline{q}_{v} = (\frac{0.026 + 0.015}{2}) = 0.0205 \frac{kg}{kg}$$

Ζ

Specific humidity at z_2 , q_y =0.015 kg/kg

The mass of precipitable water in the first 2 km increment is

 $\Delta m_{\rm D} = \overline{q}_{\rm V} \overline{\rho}_{\rm D} A \Delta z = 0.0205 \text{x} 1.07 \text{x} 1 \text{x} 2,000 = 43.7 \text{ kg}$

The total mass of precipitable water in the column is found to be mp = 77kg. The equivalent depth pf liquid water is

$$\frac{m_p}{\rho_w A} = \frac{77}{(1,000 \times 1)} = 0.077 \text{ m} = 77 \text{ mm}$$

Precipitation

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity.

Meteorological Processes

Source: eschooltoday (2018)

Forms of Precipitation

Drizzle/Mist

 Drizzle is a light liquid precipitation consisting of liquid water drops smaller than those of rain – generally smaller than 0.5 mm.

Rain

- Rain is liquid water in the form of droplets that have condensed from atmospheric water vapor and then becomes heavy enough to fall under gravity.
- Water drops of size between 0.5-0.6 mm.

Source: Wikipedia (2018b)

Forms of Precipitation

Snow

- Snow refers to forms of ice crystals that precipitate from the atmosphere (usually from clouds).
- Diameter is 1-2 mm.
- Average specific gravity is 0.1.

Sleet [Rain and snow mixed]

- Sleet is precipitation composed of rain and partially melted snow.
- Diameter is 0.5-5 mm.

Source: Wikipedia (2018b)

Mahidol University Wisdom of the Land

Forms of Precipitation

Hail

 Hail is the precipitation in the form of ice balls of diameter more than about 8 mm.

Source: Wikipedia (2018)

RAINFALL DATA: RAINFALL MEASUREMENT

Rain Guage

Tipping Bucket Rain Guage

RAINFALL DATA: RAINFALL ISOHYETAL MAP

Rainfall Isohyetal Map

- Rainfall data varies greatly in space and time.
- Rainfall can be represented by "Isohyetal Map".
- Isohyet is a contour of constant rainfall.

RAINFALL DATA: RAINFALL HYETOGRAPH

T:	Datafall	foll Cumulative	Run	Running Totals			
(min)	(in)	rainfall	30 min	1 h	2 h		
0		0.00					
5	0.02	0.02					
10	0.34	0.36					
15	0.10	0.46				-	
20	0.04	0.50					
25	0.19	0.69	No IN STREET				
30	0.48	1.17	1.17 =	117-0	00		
35	0.50	1.67	1.65	1 47 0	00		
40	0.50	2.17	1.81	1.07-0.	.02		
45	0.51	2.68	2.22				
50	0.16	2.84	2.34				
55	0.31	3.15	2.46				
60	0.66	3.81	2.64	3.81	=3.81	-0.00	
65	0.36	4.17	2.50	4.15	=4.17	-0.02	
70	0.39	4.56	2.39	4.20	1 7.17	0.02	
75	0.36	4.92	2.24	4.46			
80	0.54	5.46	2.62	4.96			
85	0.76	6.22	3.07	5.53			
90	0.51	6.73	2.92	5.56			
95	0.44	7.17	3.00	5.50			
100	0.25	7.42	2.86	5.25			
105	0.25	7.67	2.75	4.99			
110	0.22	7.89	2.43	5.05			
115	0.15	8.04	1.82	4.89	Sales and		
120	0.09	8.13	1.40	4.32	8.13	=3.81-0.00	
125	0.09	8.22	1.05	4.05	8.20	-822-002	
130	0.12	8.34	0.92	3.78	7.98	-0.22-0.02	
135	0.03	8.37	0.70	3.45	7.91		
140	0.01	8.38	0.49	2.92	7.88		
145	0.02	8.40	0.36	2.18	7.71		
150	0.01	8.41	0.28	1.68	7.24		
Max. der	oth 0.76	n parti da la compositi Presidencia da la composition	3.07	5.56	8.20	10	
(in/h)	9.12 $=$.76/(5/60)	6.14	5.56	4.10	=8.20/2	

Computation of rainfall depth and intensity at a point

The rainfall data in 5-minute increments from gage 1-Bee in the Austin storm.

Computations of max rainfall depth and intensity give index of how severe a particular storm is, compared to other storms recorded at the same location, and they provide useful data for design of control structures.

Source: Chow et al. (1988)

RAINFALL DATA: RAINFALL HYETOGRAPH

Rainfall Hyetograph

Rainfall hyetograph is a plot of rainfall depth or intensity as a function of time.

RAINFALL DATA: CUMULATIVE RAINFALL HYETOGRAPH

Cumulative Rainfall Hyetograph/Rainfall Mass Curve

Cumulative rainfall hyetograph is a plot of cumulative rainfall as a function of time.

RAINFALL DATA: AREAL RAINFALL

Areal Rainfall

In general, for water resources planning purposes, knowledge is required of **the average rainfall depth over a certain area**. This is called the "**Areal Rainfall**".

Some examples where the areal rainfall is required include;

- Design of a culvert or bridge draining a certain catchment area.
- Design of a pumping station to drain an urbanized area.
- Design of a structure to drain a polder.

Estimation Methods

There are various methods to estimate the average rainfall over an area, (areal rainfall) with area A from n Point-measurements, P_i.

- Arithmetic-Mean Method
- Thiessen Polygon Method
- Isohyetal Method
- Grid Point Method
- Kriging Method

Arithmetic-Mean Method

It is the simplest method in which average depth of rainfall is obtained by obtaining the sum of the depths of rainfall (P₁, P₂, P₃,..., P_n) measured at stations 1, 2, 3,..., n and dividing the sum by the total number of stations.

$$\overline{P} = \frac{P_1 + P_2 + P_3 + \dots + P_n}{n} = \frac{1}{n} \sum_{i=1}^{n} P_i$$

 This method is suitable if the rain gage stations are uniformly distributed over the entire area and the rainfall variation in the area is not large.

Thiessen Polygon Method

- Thiessen polygon method takes into account the non-uniform distribution of the gages by assigning a weightage factor for each rain gage.
- The entire area is divided into number of triangular areas by joining adjacent rain gage stations with the straight lines.

Thiessen Polygon Method

Assuming that rainfall P_i recorded at any stations i representative rainfall of the area A_i of the polygon i within which rain gage station is located.

$$\overline{P} = \frac{1}{A} \sum_{i=1}^{n} P_i A_i$$

$$A = \sum_{i=1}^{n} A_i = A_1 + A_2 + A_3 + \dots + A_n$$

- The method is better than the arithmetic mean method since it assigns some weightage to all rain gages on area basis.
- The rain gage stations outside the catchment can also be used effectively.
- Once the weightage factors for all the rain gage stations are computed, the calculation of the average rainfall depth P is relatively easy for given network of stations.

Isohyetal Method

- An isohyet is a contour of equal rainfall.
- Knowing the depths of rainfall at each rain gage station of an area, assuming linear variation of rainfall between any two adjacent stations, one can draw a smooth curve passing through all points indicating the same value of rainfall.
- The area between two adjacent isohyets is measured with the help of a "Planimeter".
- Average depth of rainfall, P

Mahidol

University

- $\overline{P} = \frac{1}{A} \sum_{k=1}^{\infty} [Area between two adjacent isohyets]x$ [mean of the two adjacent isohyte values]
- Since this method considers actual spatial variation of rainfall, it is considered as the best method for computing average depth of rainfall.

ARITHMETIC-MEAN METHOD: EXAMPLE 3

Compute the areal average rainfall by arithmetic-mean method.

Station	Observed rainfall within the area (mm)
P2	20
P3	30
P4	40
P5	50
Total	140

Average Rainfall = 140/4 = 35 mm

THIESSEN POLYGON METHOD: EXAMPLE 4

Compute the areal average rainfall by Thiessen polygon method.

Station	Observed rainfall (mm)	Area (km²)	Weighted rainfall (mm)
P1	10	0.22	2.2
P2	20	4.02	80.4
P3	30	1.35	40.5
P4	40	1.60	64.0
P5	50	1.95	97.5
Total		9.14	284.6

Average Rainfall = 284.6/9.14 = 31.1 mm

ISOHYETAL METHOD: EXAMPLE 5

Compute the areal average rainfall by isohyetal method.

Isohyets	Area Enclosed (km²)	Average Rainfall (mm)	Rainfall Volume
10	0.88	5*	4.4
20	1.59	15	23.9
20 30 40 50	2.24	25	56.0
	3.01	35	105.4
	1.22	45	54.9
	0.20	53*	10.6
Total		9.14	255.2

Average Rainfall = 255.2/9.14 = 27.9 mm

ARITHMETIC-MEAN METHOD: EXAMPLE 6

The average depth of annual rainfall precipitation as obtained at the rain gage stations for a specified area are as shown in figure. The values are in cm. Determine the average depth of annual precipitation using the arithmetic-mean method.

Mahidol

University

Solution

$$\overline{\mathsf{P}} = \frac{1}{11} [20.3 + 88.1 + 60.9 + 54.7 + 48.1 + 45.6 + 60.0 + 84.0 + 93.2 + 140.6 + 154.0]$$

 $=\frac{1}{11}(849.5)=77.23$ cm

THIESSEN POLYGON METHOD: EXAMPLE 7

The average depth of annual rainfall precipitation as obtained at the rain gage stations for a specified area are as shown in figure. The values are in cm. Determine the average depth of annual precipitation using the Thiessen polygon method.

THIESSEN POLYGON METHOD: EXAMPLE 7

Rainfall Guage Station	Rainfall, Pi (cm)	Area of Polygon, Ai (km²)	Weightage Factor (%), A _i /∑A _i x100	P _i A _i /∑A _i
1	20.3	22	1.13	0.23
2	88.1	0	0	0
3	60.9	0	0	0
4	54.7	0	0	0
5	48.1	62	3.19	1.53
6	45.6	373	19.19	8.75
7	60.0	338	17.39	10.43
8	84.0	373	19.19	16.12
9	93.2	286	14.71	13.71
10	140.6	236	12.41	17.07
11	154.0	254	13.07	20.13
Total		1,944	100.01	87.97

Average Annual Precipitation = $\Sigma P_i \frac{A_i}{\Sigma A_i}$ = 87.97 cm

ISOHYETAL METHOD: EXAMPLE 8

The average depth of annual rainfall precipitation as obtained at the rain gage stations for a specified area are as shown in figure. The values are in cm. Determine the average depth of annual precipitation using the isohyetal method.

4

0

ISOHYETAL METHOD: EXAMPLE 8

lsohyets (cm)	Net Area, Ai (km²)	Average Precipitaiton, Pi (cm)	P _i A _i
<30	96	25	2,400
30-60	600	45	27,000
60-90	610	75	45,750
90-120	360	105	37,800
120-150	238	135	32,130
>150	40	160	6,400
Total	1,944		151,480

Average Annual Precipitation for the basin = $\frac{151,480}{1,944}$ = 77.92 mm

RAINFALL DATA: CONTINUITY AND CONSISTENCY CHECK

Continuity and Consistency

- Rainfall data must be checked for continuity and consistency before they are analyzed for any purpose.
- Changes in the catchment rainfall are caused by the changes in relevant conditions of the rain gauge;
 - Guage location
 - Observation technique
 - Surrounding
 - etc.

Rain Guage & Tipping Bucket Rainguage

Surrounding
RAINFALL DATA: MISSING DATA

Estimation of Rainfall Missing Data

The missing annual rainfall, Px

$$P_{x} = \frac{1}{M}(P_{1} + P_{2} + \dots + P_{m})$$

$$P_{x} = \frac{N_{x}}{M} [\frac{P_{1}}{N_{1}} + \frac{P_{2}}{N_{2}} + \dots + \frac{P_{m}}{N_{m}}]$$

Multiple Linear Regression

$$P_x = a + b_1 P_1 + b_2 P_2 + \dots + b_m P_m$$

When

1, 2, 3,...,M = neighbouring rainfall stations P₁, P₂, P₃,...,P_m = annual rainfall values N₁, N₂, N₃,...,N_m = average rainfall values

ESTIMATION OF RAINFALL MISSING DATA: EXAMPLE 9

Fill up the missing annual rainfall at station X.

Station	Annual Rainfall(mm/yr)					
1	1,000					
2	1,300					
3	1,000					
Х	_					
Px	1,100					

$$P_{x} = \frac{1}{M}(P_{1} + P_{2} + \dots + P_{m})$$

ESTIMATION OF RAINFALL MISSING DATA: EXAMPLE 10

Fill up the missing annual rainfall at station X.

 $N_1 = N_A = 1,000 \text{ (Avg.10)}$ $N_2 = N_B = 1,200$ (Avg.10) $N_x = 1,000 (Avg.9)$ M = 2 $P_{x} = 1,000 \text{ mm}$

Year	Station A	Station B	Station X			
1	1,000	1,200	1,000			
2	1,000	1,200	1,000			
3	1,000	1,200	1,000			
4	1,000	1,200	1,000			
5	1,000	1,200	1,000			
6	1,000	1,200	1,000			
7	1,000	1,200	Px			
$P_{x} = \frac{N_{x}}{M} \left[\frac{P_{1}}{N_{1}} + \frac{P_{2}}{N_{2}} + \dots + \frac{P_{m}}{N_{m}} \right]$						

RAINFALL DATA: CONTINUITY AND CONSISTENCY CHECK

Double Mass Curve

Double mass curve compares the accumulated annual rainfall at a given station with the concurrent accumulated values of average rainfall for a group of the surrounding stations.

DOUBLE MASS CURVE: EXAMPLE 10

Construct the double mass curves of rainfall data as tabulated.

Annual Rainfall (mm/yr)			Cumu Rain	Avg. Value			
No	Annual Rainfall (mm/yr)						
	Station 1	Station 2	Station 3	Station 1	Station 2	Station 3	Average
1	1,486.20	2,472.20	1,113.40	1,486.20	2,472.20	1,113.40	1,690.60
2	1,475.70	2,468.80	1,482.90	2,961.90	4,941.00	2,596.30	3,499.73
3	1,403.80	2,001.30	953.10	4,365.70	6,942.30	3,549.40	4,952.47
4	793.80	1,917.50	521.20	5,159.50	8,859.80	4,070.60	6,029.97
5	962.60	2,130.90	812.70	6,122.10	10,990.70	4,883.30	7,332.03
6	964.20	1,819.80	1,673.60	7,086.30	12,810.50	6,556.90	8,817.90
7	1,056.90	1,851.80	925.10	8,143.20	14,662.30	7,482.00	10,095.83
8	1,217.00	2,783.00	794.10	9,360.20	17,445.30	8,276.10	11,693.87
9	1,737.00	3,034.00	775.20	11,097.20	20,479.30	9,051.30	13,542.60
10	1,096.90	1,492.50	1,355.40	12,194.10	21,971.80	10,406.70	14,857.53
11	1,165.90	2,020.00	575.90	13,360.00	23,991.80	10,982.60	16,111.47
12	1,458.00	2,504.70	1,126.60	14,818.00	26,496.50	12,109.20	17,807.90
13	1,132.60	2,042.90	819.20	15,950.60	28,539.40	12,928.40	19,139.47
14	1,272.80	2,115.30	827.50	17,223.40	30,654.70	13,755.90	20,544.67
15	1,484.10	2,236.60	1,036.00	18,707.50	32,891.30	14,791.90	22,130.23
16	818.60	1,922.30	826.60	19,526.10	34,813.60	15,618.50	23,319.40
17	865.40	2,379.40	835.20	20,391.50	37,193.00	16,453.70	24,679.40
18	1,168.70	2,609.80	710.00	21,560.20	39,802.80	17,163.70	26,175.57
19	939.30	2,177.40	776.40	22,499.50	41,980.20	17,940.10	27,473.27
20	984.10	1,928.60	874.80	23,483.60	43,908.80	18,814.90	28,735.77
21	969.80	3,088.20	943.60	24,453.40	46,997.00	19,758.50	30,402.97
22	1,275.90	2,443.40	961.30	25,729.30	49,440.40	20,719.80	31,963.17
23	1,810.20	2,689.40	646.50	27,539.50	52,129.80	21,366.30	33,678.53
24	1,110.70	2,938.30	1,170.40	28,650.20	55,068.10	22,536.70	35,418.33
25	1,349.70	1,571.10	1,174.60	29,999.90	56,639.20	23,711.30	36,783.47
26	1,580.10	2,568.70	1,312.10	31,580.00	59,207.90	25,023.40	38,603.77
27	1,214.10	2,127.00	322.80	32,794.10	61,334.90	25,346.20	39,825.07
28	1,229.30	2,317.20	1,195.00	34,023.40	63,652.10	26,541.20	41,405.57
29	926.70	2,199.00	566.40	34,950.10	65,851.10	27,107.60	42,636.27
30	1,464.70	2,117.90	773.10	36,414.80	67,969.00	27,880.70	44,088.17

Mahidol

University

DOUBLE MASS CURVE: EXAMPLE 10

3-Station Mean (mm)

RAINFALL-RUNOFF RELATION: EMPIRICAL FORMULA/WATER BUDGET/ANNS University

Mahidol University

Empirical Formula

- Barlow's Formula
 - $R = K_b P$
- Strange's Formula

 $R = K_s P$

 Khosla analyzed monthly rainfall data (P_m), runoff (R_m), and Temperature (T_m) for various catchments of India and US.

 $R_m = P_m - L_m$

L_m represents monthly losses

Hydrologic Water Budget Equation

 $\mathsf{R} = \mathsf{P} - \mathsf{E}\mathsf{T} - \mathsf{G} - \Delta\mathsf{S}$

Artificial Neural Network (ANNs) Technique

RAINFALL-RUNOFF RELATION: EMPIRICAL FORMULA/WATER BUDGET/ANNS

Barlow's runoff coefficient Kb in percent

Class	Description of Catchment	Values of Kb (Percent)					
		Season 1	Season 2	Season 3			
А	Flat, cultivated and absorbent soils	7	10	15			
В	Flat, partly cultivated, stiff soils	12	15	18			
С	Average catchment	16	20	32			
D	Hills and plains with little cultivation	28	35	60			
E	Very hilly, steep and hardly any cultivation364581						
Season 1: Light rain, no heavy downpour Season 2: Average or varying rainfall, no continuous downpour Season 3: Continuous downpour							

Developed for use in UP and catchment is less than about 150 km².

RAINFALL-RUNOFF RELATION: EMPIRICAL FORMULA/WATER BUDGET/ANNS

Strange's runoff coefficient Ks in percent

Total Monsoon	Runoff Coefficient Ks (Percent)					
Rainfall (cm)	Good Catchment Average Catchment		Bad Catchment			
25	4.3	3.2	2.1			
50	15.0	11.3	7.5			
75	26.3	19.7	13.1			
100	37.3	28.0	18.7			
125	47.6	35.7	23.8			
150	58.9	44.1	29.4			

Developed for use in border areas of Maharashtra and Karnataka.

EVAPORATION

Evaporation

- Evaporation is the process by which water changes from a liquid to a gas or vapor.
- Evaporation is the primary pathway that water moves from the liquid state back into the water cycle as atmospheric water vapor.

Evaporation from **open water surface**.

Evaporation from **land surface** comprises.

- **Evaporation** directly from soil and vegetation surface.
- Transpiration through plant leaves.

EVAPORATION

Factors influencing Evaporation Loss

The two main factors influencing evaporation from an open water surface are :

- The supply of energy to provide latent heat of vaporization.
 (Solar radiation is the main source of heat energy).
- The ability to transport vapor away from evaporative surface. It depends on wind velocity over the surface and specific humidity gradient in the air above it.

EVAPORATION DATA: EVAPORATION MEASUREMENT

Evaporation Pan

Evaporation Pan Method, **E = Kp.Ep**

- E = Evaporation Rate (mm/day)
- Kp = Pan Coefficient
- Ep = Measured Evaporation (mm/day)

EVAPORATION DATA: ESTIMATION OF EVAPORATION DATA

Estimation of Evaporation Data

Consider the evaporation from an evaporation pan. An evaporation pan is a circular tank containing water. The rate of evaporation is measured by the rate of fall of water surface.

A control surface is drawn around the pan enclosing both the water in the pan and the air above it.

Evaporation Pan

EVAPORATION DATA: ESTIMATION OF EVAPORATION DATA

Estimation of Evaporation Data Energy Balance Method

$$E_r = 0.0353 R_n \left(\frac{mm}{day}\right)$$
 When

• • •

$$R_n = Net Radiation (\frac{W}{m^2})$$

Aerodynamic Method

$$\mathsf{E}_{a} = \mathsf{B}(\mathsf{e}_{as} - \mathsf{e}_{a}) \; (\frac{\mathsf{mm}}{\mathsf{day}})$$

When

$$B = \frac{0.102_{U_2}}{[\ln(\frac{Z_2}{7})]^2} \left(\frac{mm}{day}.Pa\right)$$
$$e_{as} = 611exp\left(\frac{17.27T}{237.3+T}\right) (Pa)$$

 $e_a = R_h e_{as}$ (Pa)

EVAPORATION DATA: ESTIMATION OF EVAPORATION DATA

Estimation of Evaporation Data Combined Method

$$\mathsf{E} = \frac{\Delta}{\Delta + \gamma} \mathsf{E}_{\mathsf{r}} + \frac{\gamma}{\Delta + \gamma} \mathsf{E}_{\mathsf{a}} \quad (\frac{\mathsf{mm}}{\mathsf{day}})$$

$$\Delta = \frac{4098e_{as}}{(237.3 + T)^2} \left(\frac{Pa}{C}\right)^2$$

$$\gamma = 66.8 \ (\frac{Pa}{\circ C})$$

 $E = K_p E_p$

Evaporation Pan Method

$$\Delta = \alpha \frac{\Delta}{(\Delta + \gamma)} \mathsf{E}_{\mathsf{r}}$$
 When

 $\alpha = 1.3$

EVAPOTRANSPIRATION

Evapotranspiration (ET)

The processes of evaporation from land surface and transpiration from vegetation are collectively termed "**Evapotranspiration**".

Source: Wikipedia (2018c)

The term **Evapotranspiration** combines two words:

- Evaporation of water from the soil.
- **Transpiration** of water from plants into the air.

Evapotranspiration means the total loss of water from a crop into the air.

ET = ETc = Crop Water

Crop water is important because it determines how much water must be provided by irrigation or rain.

EVAPOTRANSPIRATION: ET CALCULATION

Climatic Data:

Crop ET (ETc) vs Reference Crop ET (ETo)

Developing Kc

Steps:

- 1. Measure climatic conditions
- 2. Measure water use
- 3. Calibrate formula to calculate ETo

Penman-Monteith Formula

Measure climatic conditions and calculate ETo

Developing Kc

Measure ETc for the crop stage of growth.

Developing Kc

Crop ET vs Reference ET

ETO CALCULATION: EXAMPLE 10

Calculation of ETo by Pan Evaporation Method in Excel Spreadsheet

ETO CALCULATION: EXAMPLE 11

Calculation of ETo by Meteorological Method in Excel Spreadsheet

EVAPOTRANSPIRATION CALCULATION: EXAMPLE 12

The monthly values of reference crop evapotranspiration Etr, calculated using the combination method for average condition in Silistra, Bulgaria.

	t1	-	t2	t3		t4	t5	
Month	Apr	May	Jun	Jul	Aug	Sep	Oct	Apr-Oct total
ETo (mm/day)	4.14	5.45	5.82	6.60	5.94	4.05	2.34	34.3 mm
Кс	0.38	0.38	0.69	1.00	1.00	0.78	0.55	
ET (mm/day)	1.57	2.07	4.02	6.60	5.94	3.16	1.29	24.7 mm

Time t

Crop coefficient for corn, <u>k1=0.38, k2=1.00, k3=0.55</u> <u>t1=Apr, t2=Jun, t3=Jul,t4=Sep, t5=Oct</u>

Calculate the actual evapotranspiration from this crop assuming a well-watered soil.

- 1-Initial stage (less than 10% ground cover).
- 2-Development state (from initial stage to attainment of effective full ground cover (70-80%)).

3-Mid-season stage (from full ground cover to maturation). 4-Late season state (full maturity and harvest).

REFERENCES

Chow, V.T., Maidment, D.R., & Mays, L.W. (1988). Applied hydrology. New York: McGraw-Hill Book Company.

- Conserve-Energy-Future. (2018). *Hydrologic cycle*. Retrieved July 12, 2018 from https://www.conserve-energy-future.com/different-steps-of-thehydrologic-cycle.php.
- Eschooltoday. (2018). Condensation. Retrieved July 12, 2018 from https://www.eschooltoday.com/water-cycle/what-iscondensation.html.
- Wikipedia. (2018a). Atmospheric circulation. Retrieved July 12, 2018 from https://en.wikipedia.org/wiki/Atmospheric_circulation.
- Wikipedia. (2018b). Precipitation. Retrieved July 12, 2018 from
 - https://en.wikipedia.org/wiki/Precipitation.
- Wikipedia. (2018c). Evapotranspiration. Retrieved July 12, 2018 from https://en.wikipedia.org/wiki/Evapotranspiration.

LECTURE NOTES EGCE 323 HYDROLOGY

Asst.Prof.Dr.Areeya Rittima

Department of Civil and Environmental Engineering Faculty of Engineering Mahidol University E-mail: areeya.rit@mahidol.ac.th Revised in 2018

LECTURE OUTLINE

Groundwater

- Groundwater
- Groundwater Flow Processes

HYDROLOGIC CYCLE

GROUNDWATER

Groundwater is the water found underground in the cracks and spaces in soil, sand and rock. It is stored in and moves slowly through geologic formations of soil, sand and rocks called "**Aquifers**".

Unsaturated Zone

Water Table

Saturated Zone

GROUND WATER

Source: USGS (2018)

Surface Water

Land Surface

Creviced Rock

Water (not ground water) held by molecular attraction surrounds surfaces of rock particles

- - Approximate level of water table -

All openings below water table full of ground water

GROUNDWATER ZONE

Vadose zone Pw < Pa Capillary fringe Water table Pw = Pa Saturated zone Pw > Pa

Groundwater and soil water together make up approximately 0.5% of all water in the hydrosphere.

Water beneath the surface can essentially be divided into three zones:

- Soil Water Zone (Vadose Zone)
- Intermediate Zone (Capillary Fringe)
- Groundwater Zone (Saturated Zone)

The top two zones, the vadose zone and capillary fringe, can be grouped into the zone of aeration (Unsaturated Zone), where during the year air occupies the pore spaces between earth materials.

GROUNDWATER FLOW

Groundwater Flow

Three important processes are;

- Infiltration of surface water into the soil to become soil moisture.
- Subsurface flow (Unsaturated flow through the soil).
- Groundwater flow (Saturated flow through the soil/rock strata).

Subsurface Water Zone and Processes

GROUNDWATER FLOW ZONE

Types of Aquifer

UNSATURATED FLOW

- Soil and rock strata which permit water flow are called "Porous Media".
- Flow is unsaturated when the porous medium still has some of its voids occupied by air, and **saturated** when the voids are filled with water.
- The water table is the surface where the water in a saturated porous medium is at atmospheric pressure.
- Below the water table, the porous medium is saturated and at greater pressure than atmosphere.
- Above the water table, the porous medium is usually unsaturated except following rainfall, when infiltration from the land surface can produce saturated conditions temporarily.
- Subsurface and groundwater outflow occur when subsurface water emerges to become surface flow in a stream.
- Soil moisture is extracted by ET as the soil dries out.

A portion of cross section is occupied by **soil particles** and **voids** (air & water)

Porosity (η)

 $\eta = \frac{\text{Volume of Voids}}{\text{Total Volume}}$

The range of η is approximately 0.25< η <0.75 for soils, the value depending on the soil texture.

Porosity is a measure of how much of a rock/soil is open space. This space can be between grains or within cracks or cavities of the rock.

UNSATURATED FLOW

Soil Moisture Content (θ)

A part of the voids is occupied by water and the remainder by air, the volume occupied by water being measured by the **Soil Moisture Content (\theta)**

 $\theta = \frac{\text{Volume of Water}}{\text{Total Volume}}$

0.25< $\theta < \eta$; the soil moisture content is equal to the porosity when the soil is saturated.

UNSATURATED FLOW

Darcy Flux

coordinate directions.Volume= dx.dy.dzThe volume of water contained in the
control volume= $\theta.dx.dy.dz$ The flow of water through the soil is
measured by the "Darcy Flux" (q)

Its sides have length **dx**, **dy**, **dz** in the

$$q = \frac{Q}{A}$$

Control volume containing unsaturated soil

Source: Chow et al. (1988)

UNSATURATED FLOW

Darcy Flux

Control volume containing unsaturated soil

$$Sf = -\frac{\partial h}{\partial z}$$
$$q = -K\frac{\partial h}{\partial z}$$

The negative sign indicates that the total head is decreasing in the direction of flow because of friction,

Source: Chow et al. (1988)

Darcy's Law was developed to relate the Darcy flux, **q** to the rate of head loss per unit length of medium, Sf

$$q = KS_{f}$$

Consider flow in the vertical direction and denote the total head of the flow by **h**

Infiltration

Infiltration is a process of water penetrating from the ground surface into the soil.

The factor influences the infiltration rate;

- condition of soil surface and its vegetative cover
- properties of the soil: porosity and hydraulic conductivity
- current moisture content of the soil

Hydraulic Conductivity/Permeability

Hydraulic conductivity is a measure of the ease with which a fluid (water in this case) can move through a porous media.

Moisture Zones during Infiltration

The distribution of soil moisture within the soil profile during the downward movement of water is illustrated in the figure.

There are 5 moisture zones

- Saturated Zone
- Transition Zone
- Transmission Zone
- Wetting Zone
- Wetting Front

Moisture zones during infiltration

Saturated Zone

It is near the surface, extending up to about 1.5 cm below the surface and having a saturated water content.

Transition Zone

It is about 5 cm thick and is located below the saturated zone. In this zone, a rapid decrease in water content occurs.

Transmission Zone

The water content varies slowly with depth as well as time.

Moisture zones during infiltration

Wetting Zone

The sharp decrease in water content is observed.

Wetting Front

a region of very steep moisture gradient. This represents the limit of moisture penetration into the soil.

Moisture zones during infiltration

INFILTRATION MEASUREMENT

Infiltration Rate, f expressed in inches per hour or centimeters per hour, is the rate at which water enters the soil at the surface.

If water is ponded on the surface, the infiltration occurs at the **Potential Infiltration Rate**.

Cumulative infiltration, F is the accumulated depth of water infiltrated during a given time period and is equal to the integral of the infiltration rate over that period.

 $f(t) = \frac{dF(t)}{dt}$ The infiltration rate is the time derivative of the cumulative infiltration.

Horton's Equation

One of the earliest infiltration equations was developed by Horton (1933, 1939) who observed that;

"Infiltration begins at some rate, fo and exponentially decreases until it reaches a constant rate, fc"

Phillip's Equation

Philip (1957, 1969) solved the equation to yield an infinite series for cumulative infiltration, F(t), which is approximated by

$\mathsf{F(\dagger)} = \mathsf{S}\mathsf{t}^{1/2} + \mathsf{K}\mathsf{t}$

- S = a parameter called sorptivity (which is a function of the soil suction potential)
- K = hydraulic conductivity

By differentiation

 $f(\dagger) = \frac{1}{2} S^{\frac{1}{2} + K}$

As t $\rightarrow \infty$, f(t) tends to K

For a horizontal column of soil, soil suction is the only force drawing water into the column

 $F(t) = St^{1/2}$

Soil Texture	Porosity (%)	Basic Infiltration Rate (cm/hr)	
Sand	32-42	2.5-25	
Sandy Loam	40-47	1.3-7.6	
Loam	43-49	0.8-2.0	
Clay Loam	47-51	0.25-1.5	
Silty Clay	49-53	0.03-0.5	
Clay	51-55	0.01-0.1	

INFILTRATION: EXAMPLE 1

A small tube with a cross-sectional area of 40 cm2 is filled with soil and laid horizontally. The open end of the tube is saturated, and after 15 minutes, 100 cm3 of water have infiltrated into the tube. If the saturated hydraulic conductivity of the soil is 0.4 cm/hr, determine how much infiltration would have taken place in 30 minutes if the soil column had initially been placed upright with its upper surface saturated.

The cumulative infiltration depth in the horizontal column is F = 100 cm³/40 cm² = 2.5 cm.

For horizontal infiltration, cumulative infiltration is a function of soil suction alone so that t = 15 min = 0.25 hr

 $F(\dagger) = S \uparrow^{1/2}$

 $F(t) = 2.5 \text{ cm}, t = 0.25 \text{ hr}, therefore S = 5 \text{ cm}.hr^{-1/2}$

INFILTRATION: EXAMPLE 1

For infiltration down a vertical column, applies with K=0.4 cm/hr. Hence, with t = 30 min = 0.5 hr.

$$f(t) = \frac{1}{2} S t^{-1/2} + K$$

 $S = 5 \text{ cm.hr}^{-1/2}, t = 0.5 \text{ hr}, K = 0.40$ f(t) = 3.93 cm

REFERENCES

Chow, V.T., Maidment, D.R., & Mays, L.W. (1988). Applied hydrology. New York: McGraw-Hill Book Company.

- Conserve-Energy-Future. (2018). *Hydrologic cycle*. Retrieved July 12, 2018 from https://www.conserve-energy-future.com/different-steps-of-thehydrologic-cycle.php.
- USGS. (2018). Aquifers and groundwater. Retrieved July 12, 2018 from https://water.usgs.gov/edu/earthgwaquifer.html.

LECTURE NOTES EGCE 323 HYDROLOGY

Asst.Prof.Dr.Areeya Rittima

Department of Civil and Environmental Engineering Faculty of Engineering Mahidol University E-mail: areeya.rit@mahidol.ac.th Revised in 2018

LECTURE OUTLINE

Surface Water

- Source of Streamflow
- Streamflow Characteristics
- Travel Time and Stream Networks

HYDROLOGIC CYCLE

SURFACE WATER

Surface Water

Surface water is water stored/flowing on the earth surface.

SURFACE WATER

Surface Water

The surface water system continually interacts with the atmospheric and subsurface systems.

Source: NASA (2018)

SURFACE WATER: RUNOFF

In hydrology, runoff is quantity of water discharged in surface streams.

- Runoff includes not only the waters that travel over the land surface and through channels to reach a stream but also interflow, the water that infiltrates the soil surface and travels by means of gravity toward a stream channel (always above the main groundwater level) and eventually empties into the channel.
- Runoff also includes groundwater that is discharged into a stream; streamflow that is composed entirely of groundwater is termed base flow, or fair-weather runoff, and it occurs where a stream channel intersects the water table.

Source: Earthonlinemedia (2018)

Streamflow/Channel Runoff

- Streamflow, or channel runoff, is the flow of water in streams, rivers, and other channels, and is a major element of the water cycle. It is one component of the runoff of water from the land to waterbodies, the other component being surface runoff.
- Channel flow is the main form of surface water flow.
- All the other surface flow processes contribute to it.
- Determining flow rates in stream channels is a central task of surface water hydrology.
- The precipitation which becomes streamflow may reach the stream by overland flow, subsurface flow, or both.

SURFACE WATER: SURFACE RUNOFF

Surface Runoff/Overland Flow

- Surface runoff (also known as overland flow) is the flow of water that occurs when excess stormwater, meltwater, or other sources flows over the Earth's surface.
- This might occur because soil is saturated to full capacity, because rain arrives more quickly than soil can absorb it, or because impervious areas (roofs and pavement) send their runoff to surrounding soil that cannot absorb all of it.
- Surface runoff is a major component of the water cycle. It is the primary agent in soil erosion by water.

Runoff flowing into a stormwater drain

SURFACE WATER: HORTONIAN OVERLAND FLOW

Hortonian Overland Flow Horton (1933) described overland flow as follows:

Neglecting interception by vegetation, surface runoff is that part of rainfall which is not absorbed by the soil by infiltration.

If the soil has an infiltration capacity, f, expressed in inches depth absorbed per hour, then when the rain intensity i is less than f, the rain is all absorbed and there is no surface runoff.

SURFACE WATER: HORTONIAN OVERLAND FLOW

Hortonian Overland Flow

If i is greater than f, surface runoff will occur at the rate (i-f). Horton termed this difference (i-f) "**Rainfall Excess**".

Horton considered surface runoff to take the form of a sheet flow whose depth might be measured in fractions of an inch. As flow accumulates going down a slope, its depth increases until discharge into a stream channel occurs.

SURFACE WATER: HORTONIAN OVERLAND FLOW

Hortonian Overland Flow

- Hortonian overland flow is applicable for impervious surfaces in urban areas, and for natural surfaces with thin soil layers and low infiltration capacity as in semiarid and arid lands.
- Hortonian overland flow occurs rarely on vegetated surfaces in humid regions. Under these conditions, the infiltration capacity of the soil exceeds observed rainfall intensities for all except the most extreme rainfalls. Subsurface flow then becomes a primary mechanism for transporting stormwater to streams.

Streamflow Characteristics

The flow characteristics of a stream depend upon;

- intensity and duration of rainfall
- shape, soil, vegetation, slope, and drainage network of the catchment basin
- climatic factors influencing evapotranspiration.

Perennial Streams

 Perennial streams have some flow at all times of a year due to considerable amount of base flow into the stream during dry periods of the year.

Intermittent Streams

- Intermittent streams have limited contribution from the ground water.
- During the wet season when the ground water table is above the stream bed, there is a base flow contributing to the stream flow.

Streams remain dry for most of the dry season periods of a year.

Ephemeral Streams

- Ephemeral streams do not have any contribution from the base flow.
- The annual hydrograph of such a stream show series of short duration hydrographs indicating flash flows in response to the storm and the stream turning dry soon after the end of the storm.

Such streams generally found in arid zones, do not have well defined channel.

Streamflow Characteristics

Stream are also classified as

- Effluent: streams receiving water from ground water storage. [Perennial Streams]
- Influent: streams contributing water to the ground water storage. [Intermittent Streams/Ephemeral Streams]

SURFACE WATER: GRAPHICAL REPRESENTATION OF STREAMFLO

Flow/Runoff Mass Curve

Flow mass curve is cumulative flow volume, V versus time curve.

SURFACE WATER: GRAPHICAL REPRESENTATION OF STREAMF

Flow/Runoff Mass Curve

The mass curve ordinate, V at any time t is given as

$$V = \int_{t_o}^{T} Qdt$$

 t_{o} = the time at the beginning of the curve.

The slope of the mass curve at any point on the plot, dV/dt equals the rate of streamflow at that time.

Mass curve is always rising curve or horizontal curve and is useful means by which one can calculate storage capacity of a reservoir to meet specified demand as well as safe yield of a reservoir of given capacity.

SURFACE WATER: GRAPHICAL REPRESENTATION OF STREAMF EXAMPLE 1

Flow Mass Curve

The following table gives the mean monthly flows of a stream during a leap year. Determine the minimum storage required to satisfy a demand rate of 50 cms.

Month	Mean Monthly Flow (cms)	Days in Month	Monthly Flow Volume (cumec-day)	Accumulated Volume (cumec-day)
Jan	60	31	1,860	1,860
Feb	50	29	1,450	3,310
Mar	40	31	1,240	4,550
Apr	28	30	840	5,390
Мау	12	31	372	5,762
Jun	20	30	600	6,362
Jul	50	31	1,550	7,912
Aug	90	31	2,790	10,702
Sep	100	30	3,000	13,702
Oct	80	31	2,480	16,182
Nov	75	30	2,250	18,432
Dec	70	31	2,170	20,602

Mahidol

Wisdom of the Land

Aversit

SURFACE WATER: GRAPHICAL REPRESENTATION OF STREAMFLO

Mass curve of the accumulated flow versus time is shown in the figure.

For the mass curve and demand rate, all months are assumed to be of equal duration, 30.5 days.

A demand line with a slope of line PR is drawn tangential to the mass flow curve at A.

Another line parallel to this line is drawn so that it is tangential to the mass flow curve at B.

The vertical difference BC = 2,850 cumecday is the required storage for satisfying the demand rate of 50 cms.

SURFACE WATER: GRAPHICAL REPRESENTATION OF STREAMF

Flow-Duration Curve/Discharge-Frequency Curve Flow-Duration Curve of a stream is graphical plot of stream discharge against the corresponding percent of time that the stream discharge was equalled or exceeded.

Percentage Time (%)

The ordinate, Q at any percentage probability, Pp represents the flow magnitude in an average year that can be expected to be equalled or exceeded Pp percent of time and is termed as "**Pp% Dependable Discharge**".

Flow-Duration Curve/Discharge-Frequency Curve

The flow-duration curve describes the variability of the streamflow and is useful for;

- Determining dependable flow which information is required for planning of water resources and hydropower projects.
- Designing a drainage system
- Flood control studies

Preparing a Flow-Duration Curve

- The streamflow data is arranged in a descending order of stream discharges. If the number of such discharges is very large, one can use range of values as class intervals.
- Percentage probability, Pp of any flow magnitude, Q being equalled or exceeded is given as;

 $P_p = \frac{m}{N+1} \times 100(\%)$

m = the order number of the discharge (or class interval) N = the number of data points in the list

The observed mean monthly flows of a stream for a water year (June 01-May 31) are as given in the first two columns of the following table. Plot the flow-duration curve and estimate the flow that can be expected 75% of the time in a year and also the dependability of the flow of magnitude 30 cms.

Month	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May
Observed Flow	15	16	44	40	35	31	30	21	23	18	15	8

Month	Observed Flow, Q (cms)	Flow, Q arranged in descending order (cms)	Rank m	Рр (%)
Jun	15	44	1	7.7
Jul	16	40	2	15.4
Aug	44	35	3	23.1
Sep	40	31	4	30.8
Oct	35	30	5	38.5
Nov	31	23	6	46.2
Dec	30	21	7	53.8
Jan	21	18	8	61.5
Feb	23	16	9	69.2
Mar	18	15	10	84.6
Apr	15	15	11	84.6
May	8	8	N=12	92.3

 Q_{75} =15.5 cms Dependability of the flow of magnitude 30 cms = 31.5%

Column 1 of the table below gives the class interval of daily mean discharges of a streamflow data. Column 2, 3, 4, and 5 give the number of days for which the flow in the stream belonged to that class in 4 consecutive years. Estimate 80% dependable flow for the stream.

Daily Mean Discharge	Numbe strean	er of day n belong	s the flow led to the	w in the e class	Total of Col. 2, 3, 4, 5	Cumulative Total (m)	Pp (%)
(cms)	interval					F F	$P_{p} = \frac{111}{N+1} \times 100(\%$
	1995	1996	1997	1998			
1/	2/	3/	4/	5/	6/	7/	8/
125-150	0	1	4	2	7	7	0.48
100-124.9	2	5	8	4	19	26	1.78
75-99.9	20	52	40	48	160	186	12.72
50-74.9	95	90	100	98	383	569	38.92
40-49.9	140	125	117	124	506	1,075	73.53
30-39.9	71	75	65	50	261	1,336	91.38
20-29.9	15	10	20	21	66	1,402	95.90
10-19.9	15	8	10	18	51	1,453	99.38
5-9.9	7	0	1	0	8	1,461	99.93
Total	365	366	366	365	N=1,461		

A Streamflow Hydrograph (Discharge Hydrograph)

Streamflow hydrograph is a graph or table showing the flow rate as a function of time at a given location on the stream.

Two type of hydrographs are particularly important

- Annual Hydrograph
- Storm Hydrograph

Annual Hydrograph

The annual hydrograph is a plot of streamflow vs. time over a year showing the long term balance of precipitation, evaporation, and streamflow in a watershed.

Discharge

Direct Runoff (Quickflow):

Direct runoff is the spike caused by rain storms.

Baseflow:

Baseflow is the slow flow in rainless period.

Basin Yield:

The total volume of flow under the annual hydrograph

Annual Hydrograph

Perennial Streams

Most of the basin yield of perennial stream usually comes from **baseflow**, indicating that a large proportion of the rainfall is infiltrated into the basin and reaches the stream as subsurface flow.

Mahido

Wisdom of the Lan

Ephemeral Stream

Most storm rainfall becomes **direct runoff** and little infiltration occurs. Basin yield from the watershed is the result of direct runoff from large storms.

Storm Hydrograph

- The study of hydrograph during a storm is called "Storm Hydrograph".
- A storm hydrograph shows the response of a river drainage basin to a period of rainfall. They show the volume of water passing a certain point on a river, measured in cumecs in relation to volume of rainfall.

University

Precipitation (mm)

Source: Wordpress (2016)

Components of Storm Hydrograph

The figure shows the components of streamflow hydrograph during a storm.

Prior to the time of intense rainfall, baseflow is gradually diminishing (segment AB).

Direct runoff begins at B, peaks at C and ends at D.

Segment DE follows as normal baseflow recession begins again.

Methods of Baseflow Separation

Methods of baseflow separation are; (a) Straight line method (b) Fixed base method (c) Variable slope method

Straight line method involves drawing a horizontal line from the point at which surface runoff begins to the intersection with the recession limb. This is applicable to ephemeral streams.

Methods of Baseflow Separation

Methods of baseflow separation are; (a) Straight line method (b) Fixed base method (c) Variable slope method

Fixed base method, the surface runoff is assumed to end a fixed time N after the hydrograph peak. The baseflow before the surface runoff began is projected ahead to the time of the peak. A straight line is used to connect this projection at the peak to the point on the recession limb at time N after the peak.

Methods of Baseflow Separation

Methods of baseflow separation are; (a) Straight line method (b) Fixed base method (c) Variable slope method

Variable slope method, the baseflow curve before the surface runoff began is extrapolated forward to the time of peak discharge, and the baseflow curve after the surface runoff ceases is extrapolated backward to the time of point of inflection on the recession limb. A straight line is used to connect the endpoints of the extrapolated curves.

Watershed

Watershed is an area of land that drains all the streams and rainfall to a common outlet such as the outflow of a reservoir, mouth of a bay, or any point along a stream channel.

The word watershed is sometimes used interchangeably with "Drainage Basin" or "Catchment".

Ridges and hills that separate two watersheds are called the "**Drainage Divide**".

"A watershed is a precipitation collector"

Function of Watershed

The main function of watershed is to receive the incoming precipitation and then dispose it off. This is the essence of soil and water conservation.

Types of Watershed

Type of Watershed	Area Covered
Micro Watershed	0-10 ha
Small Watershed	10-40 ha
Small Watershed)	40-200 ha
Sub Watershed	200-400 ha
Macro Watershed	400-1,000 ha
River Basin)	>>1000 ha

Types of Watershed

- Square Watershed
- Triangular Watershed
- Rectangular Watershed
- Oval Watershed
- Fern Leaf Shaped Watershed
- Palm Shaped Watershed
- Polygon Shaped Watershed
- Circular Watershed

Mahidol

University

Types of Watershed vs Hydrograph

Travel Time of Flow

The travel time of flow from one point on a watershed to another can be deduced from the flow distance and velocity.

If two points on a stream are a distance L apart and the velocity along the path connecting them is v(I), where I is the distance along the path, then the travel time t is given by;

$$dI = v(I)dt \qquad \int_{0}^{1} dt = \int_{0}^{L} \frac{dI}{v(I)} \qquad t = \int_{0}^{L} \frac{dI}{v(I)}$$

If the velocity can be assumed constant at v_i in an increment of length Δl_i , i=1, 2, 3,, I then;

$$\dagger = \sum_{i=1}^{l} \frac{\Delta I_i}{V_i}$$

Watershed vs Travel Time of Flow

Time of concentration, tc is the time of flow from the farthest point in the watershed (A) to the outlet (B).

Average Velocities in ft/s

Description of water course	Slope in Percent							
	0-3	4-7	8-11	12-				
Unconcentrated*								
-Woodlands	0-1.5	1.5-2.5	2.5-3.25	3.25-				
-Pastures	0-2.5	2.5-3.5	3.5-4.25	4.25-				
-Cultivated	0-3.0	3.0-4.5	4.5-5.5	5.5-				
-Pavements	0-8.5	8.5-13.5	13.5-17	17-				
Concentrated**								
-Outlet channel-determine velocity by Manning's formula								
-Natural channel not well defined	0-2	2-4	4-7	7-				
* This condition usually occurs	in the upper of	ovtromition of	awatorshad	prior to the				

* This condition usually occurs in the upper extremities of a watershed prior to the overland flows accumulating in a channel.

** These values vary with the channel size and other conditions. Where possible, more accurate determinations should be made for particular conditions by the Manning channel formula for velocity.

TRAVEL TIME OF FLOW: EXAMPLE 4

Calculate the time of concentration of a watershed in which the longest flow path covers 100 feet of pasture at a 5% slope, then enters a 1000 foot-long rectangular channel having width 2 ft, roughness n=0.015, and slope 2.5 percent, and receiving a lateral flow of 0.00926 cfs/ft.

Solution

Travel Time in a Channel

Distance along channel, I (ft) ∆I	0		200		400		600		800		1000
		200		200		200		200		200	
Calculated velocity, <u>v</u> (ft/s)	0		4.63		5.97		6.86		7.56		8.02
Average veloc <u>ity</u> , v (ft/s)		2.32		5.30		6.42		7.21		7.79	
Travel time, $\Delta t = \Delta l/v$ (s)		86.2		37.7		31.2		27.7		25.7	
									Σ /	<mark>Ơ=208</mark> .	.5 sec

Travel Time on Land Surface = 100/3.0 = 33.33 sec and Tc = 208.5+33.33 = 241.83 sec

Stream Networks

The quantitative study of stream networks was originated by Horton (1945). He developed a system for ordering stream networks and derived laws relating the number and length of streams of different order.

Horton's Stream Ordering System, as slightly modified by Strahler (1964) is as follows:

- The smallest recognizable channels are designated order 1; these channels normally flow only during wet weather.
- Where two channels of order 1 join, A channel of order 2 results downstream, where two channels of order I join, a channel of order i+1 results.

The order of the drainage basin is designated as the order of the stream draining its outlet, the highest stream order in the basin I.

Horton's Law of Stream Number

Horton (1945) found empirically that the "**Bifurcation Ratio**, R_B " or ratio of the number N_i, of channels of order i to the number N_{i+1} is relatively constant from one order to another.

$$\frac{N_i}{N_{i+1}} = R_B$$
 $i = 1, 2, ..., I - 1$

The theoretical minimum value of the $R_B = 2$. Values typically lie in the range 3-5.

Source: Chow et al. (1988)

Horton's Law of Stream Lengths

By measuring the length of each stream, the average length of streams of each order, Li, can be found. Horton proposed a Law of Stream Lengths in which the average lengths of streams of successive orders are related by a length ratio, RL.

Law of Stream Area

Schumm (1956) proposed a Law of Stream Areas to relate the average areas, Ai drained by streams of successive order.

Source: Chow et al. (1988)

Length of Overland flow, L

If the streams are fed by Hortonian overland flow from all of their contributing area, then the average length of overland flow, $\rm L_{o}$ is given approximately by

Drainage Density, D

Drainage density is the ratio of the total length of stream channels in a watershed to its area.

$$\mathsf{D} = \frac{\sum\limits_{i=1}^{l}\sum\limits_{j=1}^{N_{i}}\mathsf{L}_{ij}}{\mathsf{A}_{i}}$$

Source: Chow et al. (1988)

Drainage basin of the Mamon watershed in Venezuala

 (km^2)

Source: Chow et al. (1988)

Geomorphological parameters for the Mamon basins.

REFERENCES

Allgeghenygeoquest. (2018). The General integrative watershed model. Retrieved July 12, 2018 from

http://alleghenygeoquest.com/watershed_management.htm.

- Chow, V.T., Maidment, D.R., & Mays, L.W. (1988). Applied hydrology. New York: McGraw-Hill Book Company.
- Conserve-Energy-Future. (2018). *Hydrologic cycle*. Retrieved July 12, 2018 from https://www.conserve-energy-future.com/different-steps-of-thehydrologic-cycle.php.
- Earthonlinemedia. (2018). Channel geometry and flow characteristics. Retrieved July 12, 2018 from
 - http://www.earthonlinemedia.com/ebooks/tpe_3e/fluvial_systems/ch annel_geometry_and_flow.html.
- NASA. (2018). Water cycle. Retrieved July 12, 2018 from https://pmm.nasa.gov/education/water-cycle.
- Wordpress. (2016). Storm hydrograph. Retrieved July 12, 2018 from https://geographyaslevelaqa.wordpress.com/2016/02/15/stormhydrograph/.

LECTURE NOTES EGCE 323 HYDROLOGY

Asst.Prof.Dr.Areeya Rittima

Department of Civil and Environmental Engineering Faculty of Engineering Mahidol University E-mail: areeya.rit@mahidol.ac.th Revised in 2018

LECTURE OUTLINE

Hydrologic Measurement

- Hydrologic Data Measurement Sequence
- Measurement of Atmospheric Water
- Measurement of Surface Water
- Measurement of Subsurface Water
- Hydrologic Measurement Systems

HYDROLOGIC MEASUREMENT

Hydrologic Measurement

Hydrologic measurement are made to obtain data on hydrologic process.

Hydrologic data is used **to better understand the hydrologic processes** as a direct input into hydrologic simulation models for design, analysis, and decision making.

Hydrologic processes vary in space and time and are random (probability) in character.

The **uncertainties** create requirement for hydrologic measurement to provide observed data at/near the location of interest.

HYDROLOGIC MEASUREMENT

Hydrologic Measurement

The hydrologic processes are measured as

(1) Point Sample

Measurements made through time at a fixed location in space. The resulting data forms a "**Time Series**".

(2) Distributed Samples

Measurement made over a line or area in space at a specific point in time. The resulting data forms a "**Space Series**".

HYDROLOGIC MEASUREMENT SEQUENCES

Hydrologic Phenomenon

Sensing	Transform the intensity of the phenomenon into an observable signal
Recording	Make an electronic or paper record of the signal
Transmission	Move the record to a central processing site
Translation	Convert the record into a computerized data sequence
Editing	Check the data and eliminate errors and redundant info
Storage	Archive the data on a computer tape or disk
Retrieval	Recover the data in the form required
User of Data	

MEASUREMENT OF ATMOSPHERIC WATER

Hydrologic Measurement

Data	Instrument
1.Atmospheric Moisture	Radiosonde
2.Temperature	Thermometer
3.Humidity	Hygrometer
4.Radiation	Radiometer
5.Rainfall	 Nonrecording gage; standard gage, storage gage Recording gage; weighting type, float type, tipping bucket type

MEASUREMENT OF ATMOSPHERIC WATER

Hydrologic Measurement

Data	Instrument
6.Interception	Water balane; -comparing the precipitation in gage beneath the tree with that recorded nearby under the open sky
7.Evaporation	Evaporation pan; -US class A pan -USSR GGI-3000 pan
8.Evapotranspiration	Lysimeter

MEASUREMENT OF ATMOSPHERIC WATER: CLIMATE DATA

Radiosonde

A radiosonde is an instrument package carried by a balloon that ascends to altitudes of 20 to 30 kilometers.

It measures temperature, humidity, and pressure in the atmosphere and broadcasts the information back to a ground station.

The Global Positioning System is used to record the trajectory during ascent to determine wind speed and direction.
MEASUREMENT OF ATMOSPHERIC WATER: RADIATION & TEMPERATURE

Mahidol University Wisdom of the Land

Radiometer

Ground Radiometers on Stand for Upwelling Radiation.

Thermometer

MEASUREMENT OF ATMOSPHERIC WATER: HUMIDITY

Hygrometer

Psychometer

MEASUREMENT OF ATMOSPHERIC WATER: RAINFALL

Rain Guage

Tipping Bucket Rain Guage

MEASUREMENT OF ATMOSPHERIC WATER: EVAPORATION

Evaporation Pan

MEASUREMENT OF ATMOSPHERIC WATER: EVAPOTRANSPIRATION

Lysimeter

MEASUREMENT OF SURFACE WATER

Hydrologic Measurement

Data	Instrument
1.Water Surface Elevation	Staff gage
2.Flow Velocity	1) Current meter
	2) Electromagnetic sensing
	(∨MFM)
3.Streamflow Rate	Rating Curve
4.Discharge Computation	Continuous equation
5.Rating Curve	Plotting discharge vs water level

MEASUREMENT OF SURFACE WATER: WATER ELEVATION

Vertical Staff Guage

Inclined Staff Guage

MEASUREMENT OF SURFACE WATER: FLOW VELOCITY

Current Meter: Cup Type

Current Meter: Propeller Type

MEASUREMENT OF SURFACE WATER: STREAMFLOW RATE

Mahidol University Wisdom of the Land

Streamflow

Streamflow is not directly recorded, even though this variable is perhaps the most important in hydrologic studies.

Instead, water level is recorded and streamflow is deducted by means of a "**Rating Curve**".

MEASUREMENT OF SURFACE WATER: DISCHARGE COMPUTATION

At known distances from an initial point on the stream bank, the measured depth and velocity of a stream are shown in the table. Calculate the corresponding discharge at this location.

MEASUREMENT OF SURFACE WATER: DISCHARGE COMPUTATION

Measurement No, i	Distance from Initial Point, (ft)	Width, ∆w (ft)	Depth, d (ft)	Mean Velocity, V (ff/s)	Area, d∆w (ft²)	Discharge, Vd∆w (cfs)
1	0	6.0	0.0	0.00	4.7	0.0
2	12	16.0	3.1	0.37	49.6	18.4
3	32	20.0	4.4	0.87	88.0	76.6
4	52	20.0	4.6	1.09	92.0	100.3
5	72	20.0	5.7	1.34	114.0	152.8
6	92	20.0	4.5	0.71	90.0	63.9
7	112	20.0	4.4	0.87	88.0	76.6
8	132	20.0	5.4	1.42	108.0	153.4
9	152	17.5	6.1	2.03	106.8	216.7
10	167	15.0	5.8	2.22	87.0	193.1
11	182	15.0	5.7	2.51	85.5	214.6
12	197	15.0	5.1	3.06	76.5	234.1
13	212	15.0	6.0	3.12	90.0	280.8
14	227	15.0	6.5	2.96	97.5	288.6
15	242	15.0	7.2	2.62	108.0	283.0
16	257	15.0	7.2	2.04	108.0	220.3
17	272	15.0	8.2	1.56	123.0	191.9
18	287	15.0	5.5	2.04	82.5	168.3
19	302	15.0	3.6	1.57	54.0	84.8
20	317	11.5	3.2	1.18	36.8	43.4
21	325	4.0	0.0	0.00	3.2	0.0
Total		325.0			1,693.0	3,061.4

Mahidol University Wisdom of the Land Width:

Width: $\Delta w_2 = [(32-12)/2+(12-0)/2]$ = 16 ft

The corresponding area: $d_2\Delta w_2 = 3.1 \times 16.0 = 49.6 \text{ ft}^2$

The resulting discharge increment: $V_2d_2\Delta w = 0.37x49.6$ $= 18.4 \text{ ft}^3/\text{s}$

Total discharge: Q = 3,061 ft3/s

Total crossectional area: A = 1,693 ft2

The average velocity at this cross section: V = Q/A = 3,061/1,693= 1.81 ft/s

MEASUREMENT OF SURFACE WATER: DISCHARGE COMPUTATION

MEASUREMENT OF SURFACE WATER

Rating Curve/Table

A rating curve is a relationship between stage and discharge at a cross section of a river. In most cases, data from stream gages are collected as stage data

Gage Height (ft)	Discharge (cfs)	Gage Height (ft)	Discharge (cfs)	25
1.5	20	10.0	8,000	20 - E
2.0	131	11.0	9,588	ц біо Эн
2.5	307	12.0	11,300	9 10 -
3.0	530	13.0	13,100	5 -
3.5	808	14.0	15,000	
4.0	1,130	15.0	17,010	Discharge (cfs)
4.5	1,498	16.0	19,110	A Rating Curve/Table for the
5.0	1,912	17.0	21,340	Colorado River at Austin,
6.0	2,856	18.0	23,920	Texas, as applicable from
7.0	3,961	19.0	26,230	Octorber 1974-July 1982.
8.0	5,212	20.0	28,610	
9.0	6,561			Source: Chow et al. (1988)

MEASUREMENT OF SURFACE WATER

Rating Curve/Table

- The rating curve is developed using a set of measurements of discharge and gage height in the stream, these measurements being made over a period of months or years so as to obtain an accurate relationship between the stream flow rate, or discharge and the gage height at the gaging site.
- Rating curve is used to convert records of water level into flow rate.
- The rating curve must be checked periodically to ensure that the relationship between the discharge and gage height has remained constant.
- Scouring of the stream bed or deposition of sediment in the stream can cause the rating curve to change so that the same recorded gage height produces a different discharge.

MEASUREMENT OF SUBSURFACE WATER

Hydrologic Measurement

Data	Instrument
1.Soil Moisture	1) Water content
	2) Gypsum block & Neutron probes
2.Infiltration	Ring infiltrometer
3.Groundwater	Observation wells

MEASUREMENT OF SUBSURFACE WATER: MOISTURE CONTENT

Tensiometer

A **tensiometer** is a device used to determine matric water potential Ψm (Soil Moisture Tension) in the vadose zone.

The amount of moisture in the soil can be found by taking a sample of soil and oven drying. By comparing the weight of the sample before and after the drying and measuring the volume of the sample, the moisture content of the soil can be determined.

Neutron Probe

MEASUREMENT OF SUBSURFACE WATER: INFILTRATION

Single Ring Infiltrometer

Double Ring Infiltrometer

MEASUREMENT OF SUBSURFACE WATER: GROUNDWATER LEVEL

Observation Well & Pumping Well

Source: Allwelldrilling (2018)

Observation Well:

A well that is used to observe changes in groundwater levels over a period, or more specifically during a pumping test.

Pumping Well:

Groundwater is accessed for use either by pumping from wells drilled into the aquifer in the subsurface.

MEASUREMENT OF SUBSURFACE WATER: GROUNDWATER HEAD

Observation Wells

Observation Well Network:

The primary purpose of the observation well network is to collect, analyze and interpret ground water hydrographs and ground water quality data from various developed aquifers.

HYDROLOGICAL INSTRUMENTS IN THAILAND

HYDROLOGICAL INSTRUMENTS IN THAILAND

HYDROLOGICAL INSTRUMENTS IN THAILAND

REFERENCES

Allwelldrilling. (2018). Pump testing. Retrieved July 12, 2018 from http://allwelldrilling.com.au/service/pump-testing/.
Chow, V.T., Maidment, D.R., & Mays, L.W. (1988). Applied hydrology. New York: McGraw-Hill Book Company.

LECTURE NOTES EGCE 323 HYDROLOGY

Asst.Prof.Dr.Areeya Rittima

Department of Civil and Environmental Engineering Faculty of Engineering Mahidol University E-mail: areeya.rit@mahidol.ac.th Revised in 2018

LECTURE OUTLINE

Analysis of Unit Hydrograph

- The Unit Hydrograph
- Unit Hydrograph Derivation
- Unit Hydrograph Application
- Synthetic Unit Hydrograph

UNIT HYDROGRAPH: DEFINITION

Unit Hydrograph

- The unit hydrograph is the unit pulse response function of a linear hydrologic system.
- First proposed by Sherman (1932), the unit hydrograph (originally named unit-graph) of a watershed is defined as a direct runoff hydrograph (DRH) resulting from 1 in (usually taken as 1 cm in SI units) of excess rainfall generated uniformly over the drainage area at a constant rate for an effective duration.
- Sherman originally used the word "unit" to denote a unit of time. But since that time it has often been interpreted as a unit depth of excess rainfall.
- Sherman classified runoff into surface runoff and groundwater runoff and defined the unit hydrograph for use only with surface runoff.

UNIT HYDROGRAPH: ASSUMPTIONS

Unit Hydrograph

- The unit hydrograph is a simple linear model that can be used to derive the hydrograph resulting from any amount of excess rainfall. The following basic assumptions are inherent in this model;
 - The excess rainfall has a constant intensity within the effective duration.
 - The excess rainfall is uniformly distributed throughout the whole drainage area.
 - The base time of the DRH (the duration of direct runoff) resulting from an excess rainfall of given duration is constant.
 - The ordinates of all DRH's of a common base time are directly proportional to the total amount of direct runoff represented by each hydrograph.
 - For a given watershed, the hydrograph resulting from a given excess rainfall reflects the unchanging characteristics of the watershed.

UNIT HYDROGRAPH DERIVATION: DISCRETE CONVOLUTION EQUATION

$$Q_n = \sum_{m=1}^{n \le M} P_m U_{n-m+1}$$

When Q_n = Direct runoff P_m = Excess rainfall U_{n-m+1} = Unit hydrograph

Suppose that there are M pulses of excess rainfall N pulses of direct runoff in the storm considered, then N equations can be written for $Q_n = 1, 2, ..., N$ in terms of N-M+1unknown values of unit hydrograph.

Source: Chow et al. (1988)

UNIT HYDROGRAPH DERIVATION: DISCRETE CONVOLUTION EQUATION

UNIT HYDROGRAPH DERIVATION: DISCRETE CONVOLUTION EQUATION

The set of equations for discrete time convolution

Find the half-hour unit hydrograph using the excess rainfall hyetograph and direct runoff hydrograph given in the table.

Solution

The ERH and DRH in table have M=3 and N=11 pulses respectively.

Hence, the number of pulses in the unit hydrograph is N-M+1=11-3+1=9.

Substituting the ordinates of the ERH and DRH into the equations in table yields a set of 11 simultaneous equations.

Time (1/2hr)	Excess Rainfall (in)	Direct Runoff (cfs)
1	1.06	428
2	1.93	1923
3	1.81	5297
4		9131
5		10625
6		7834
7		3921
8		1846
9		1402
10		830
11		313

$$U_{1} = \frac{Q_{1}}{P_{1}} = \frac{428}{1.06} = 404 \text{ cfs/in}$$

$$U_{1} = \frac{Q_{2} - P_{2}U_{1}}{P_{1}} = \frac{1.928 - 1.93 \times 404}{1.06} = 1.079 \text{ cfs/in}$$

$$U_{3} = \frac{Q_{3} - P_{3}U_{1} - P_{2}U_{2}}{P_{1}} = \frac{5.297 - 1.81 \times 404 - 1.93 \times 1.079}{1.06} = 2.343 \text{ cfs/in}$$

and similarly for the remain ordinates

$$U_{4} = \frac{9,131 - 1.81 \times 1,079 - 1.93 \times 2,343}{1.06} = 2,506 \text{ cfs/in}$$
$$U_{5} = \frac{10,625 - 1.81 \times 2,343 - 1.93 \times 2,506}{1.06} = 1,460 \text{ cfs/in}$$
$$U_{6} = \frac{7,834 - 1.81 \times 2,506 - 1.93 \times 1,460}{1.06} = 453 \text{ cfs/in}$$

$$U_7 = \frac{3,921 - 1.81 \times 1,460 - 1.93 \times 453}{1.06} = 381 \text{ cfs/in}$$
$$U_8 = \frac{1,846 - 1.81 \times 453 - 1.93 \times 381}{1.06} = 274 \text{ cfs/in}$$
$$U_9 = \frac{1,402 - 1.81 \times 381 - 1.93 \times 274}{1.06} = 173 \text{ cfs/in}$$

Unit hydrograph

n	1	2	3	4	5	6	7	8	9
U _n (cfs/in)	404	1,079	2,343	2,506	1,460	453	381	274	173

UNIT HYDROGRAPH APPLICATION

Application of Unit Hydrograph

Once the unit hydrograph has been determined, it may be applied to direct runoff and streamflow hydrograph.

Procedures

- A rainfall hyetograph is selected.
- The abstractions are estimated.
- The excess rainfall is calculated.
- The time interval used in defining the excess rainfall hyetograph ordinates must be the same as that for which the unit hydrograph was specified.
- The discrete convolution equation may then be used to yield the direct runoff hydrograph.
- By adding an estimated baseflow to the direct runoff hydrograph, the streamflow hydrograph is obtained.

Calculate the streamflow hydrograph for a storm of 6 in excess rainfall, with 2 in the first half-hour, 3 in in the second half-hour and 1 in in the third half-hour. Use the half-hour unit hydrograph computed in example 1 and assume the baseflow is constant at 500 cfs throughput the flood. Check that the total depth of direct runoff is equal to the total excess precipitation. (Watershed area = 7.03 mi²)

Solution

 $Q_1 = P_1 U_1 = 2.00 \times 404 = 808 \, cfs$

 $Q_2 = P_2 U_1 + P_1 U_2 = 3.00 \times 404 + 2.00 \times 1,079 = 1,212 + 2,158 = 3,370 \text{ cfs}$

 $Q_3 = P_3 U_1 + P_2 U_2 + P_1 U_3 = 1.00 \times 404 + 3.00 \times 1,079 + 2.00 \times 2,343$ = 404 + 3,237 + 4,686 = 8,327 cfs

Calculation of the direct runoff hydrograph and streamflow hydrograph

Time	Excess	Unit Hydrograph Ordinates (cfs/in)								Direct S	Stream	
(1/2111)	(in)	1	2	3	4	5	6	7	8	9	(cfs)	(Cfs)
		404	1079	2343	2506	1460	453	381	274	173		
N=1	2.00	808									808	1308
2	3.00	1212	2158								3370	3870
3	1.00	404	3237	4686							8327	8827
4			1079	7029	5012						13120	13620
5				2343	7518	2920					12781	13281
6					2506	4380	906				7792	8292
7						1460	1359	762			3581	4081
8							453	1143	548		2144	2644
9								381	822	346	1549	2049
10									274	519	793	1293
11										173	173	673

Baseflow = 500 cfs
DISCRETE CONVOLUTION EQUATION: EXAMPLE 2

The total direct runoff volume =

$$V_{d} = \sum_{n=1}^{N} Q_{n} \Delta t$$

= 54,438x0.5 cfs.h
= 54,438x0.5 $\frac{ft^{3}.h}{s} \times \frac{3,600s}{1s}$
= 9.80x10⁷ ft³

The corresponding depth of direct runoff is found by dividing by the watershed area A=7.03 mi2=7.03x5280 ft²=1.96x108 ft²

$$r_{d} = \frac{V_{d}}{A} = \frac{9.80 \times 10^{7}}{1.96 \times 10^{8}}$$
 ft = 0.50 ft = 6.00 in

UNIT HYDROGRAPH VS SYNTHETIC UNIT HYDROGRAPH

Unit Hydrograph (UH)

developed from rainfall and streamflow data on a watershed applies only for that watershed and for the point on the stream where the streamflow data were measured.

Synthetic Unit Hydrograph (SUH)

Synthetic unit hydrograph procedures are used to develop unit hydrographs for other locations on the stream in the same watershed or for nearby watersheds of a similar character.

SYNTHETIC UNIT HYDROGRAPH

Synthetic Unit Hydrograph (SUH)

There are three types of synthetic unit hydrograph:

- Those relating hydrograph characteristics (peak flow rate, base time, etc.) to watershed characteristics (Snyder, 1938).
- Those based on a dimensionless unit hydrograph (Soil Conservation Service, 1972).
- Those based on models of watershed storage (Clark, 1943).

Snyder's UH

Snyder defined a standard unit hydrograph as one whose rainfall duration $t_{\rm r}$ is related to the basin lag $t_{\rm p}$ by

 $t_p = 5.5 t_r$

For a standard unit hydrograph Snyder found that

$$t_p = C_1 C_1 \left(LL_c \right)^{0.3}$$

The basin lag is

tp = the basin lag (hr)

- L = Length of the main stream from the outlet to the upstream (km)
- Lc = The distance from the outlet to a point on the stream nearest the centroid of watershed area.

C1 = 0.75

- Ct = Coefficient derived from gaged
 - watersheds in the same region.

The peak discharge per unit drainage area in m³/s.km² of the standard unit hydrograph is

$$q_{p} = \frac{C_{2}C_{p}}{t_{p}} \implies C_{2} = 2.75 \text{ and } C_{p} = \text{Coefficient} \\ \text{derived from gaged watersheds} \\ \text{in the same region.} \\ \text{If } t_{pR} = 5.5t_{R} \implies t_{R} = t_{r}, t_{pR} = t_{p}, q_{pR} = q_{p} \\ c_{t}, c_{p} \text{ are computed from } t_{p} = C_{1}C_{t}(LL_{c})^{0.3} \\ \text{If } t_{pR} \neq 5.5t_{R} \implies t_{p} = t_{pR} + \frac{t_{r} - t_{R}}{4} \\ t_{pR} = t_{p}, q_{pR} = q_{p} \\ c_{t}, c_{p} \text{ are computed from } t_{p} = C_{1}C_{t}(LL_{c})^{0.3} \\ \text{derived from } t_{p} = C_{1}$$

The relationship between q_p and the peak discharge per unit drainage area q_{pR} of the required unit hydrograph is

$$q_{pR} = \frac{q_p t_p}{t_{pR}}$$

The base time t_b in hours of the unit hydrograph can be determined using the fact that the area under the unit hydrograph is equivalent to a direct runoff of 1 cm. Assuming a triangular shape for the unit hydrograph, the base time may be estimated by

$$t_{b} = \frac{C_{3}}{q_{pR}}$$
 $C_{3} = 5.56$

The width in hours of a unit hydrograph at a discharge equal to a certain percent of the peak discharge q_{pR} is given by

$$W = C_w q_{pR}^{-1.08}$$

 C_w = 1.22 for the 75 percent width and 2.14 for the 50 percent width.

From the basin map of a given watershed, the following quantities are measured: L = 150 km, L_c = 75 km, and drainage area = 3,500 km². From the unit hydrograph derived for the watershed, the following are determined: $t_R = 12$ hr, $t_{pR} = 34$ hr, and peak discharge = 157.5 m³/s.cm. Determine the coefficients C_t and C_p for the synthetic unit hydrograph of the watershed.

Solution From the given data, $5.5t_R = 66$ hr, which is quite different from t_{pR} . Thus

$$t_p = t_{pR} + \frac{t_r - t_R}{4} = 34 + \frac{t_r - 12}{4}$$

**

Solving * and ** simultaneously gives $t_p = 32.5$ hr and $t_r = 5.9$ hr. To calculate C_t , use

$$t_p = C_1 C_1 (LL_c)^{0.3}$$

 $32.5 = 0.75C_{t}(150 \times 75)^{0.3}$ C_t = 2.65

The peak discharge per unit area is

 $q_{pR} = 157.5/3500$ = 0.045m³/s·km²·cm

The coefficient is calculated by

 $q_{p}, q_{pR} \text{ and } t_{p} = t_{pR}$ $q_{pR} = \frac{C_{2}C_{p}}{t_{pR}}$ $0.045 = \frac{2.75C_{p}}{34.0} \quad C_{p} = 0.56$

Compute the six-hour synthetic unit hydrograph of a watershed having a drainage area of 2,500 km² with L = 100 km and $L_c = 50$ km. This watershed is a sub-drainage area of the watershed in Example 3.

Solution Standard UH $C_{t} = 2.64 \text{ and } C_{p} = 0.56$ $t_{p} = 0.75 \times 2.64 \times (100 \times 50)^{0.3} = 25.5 \text{ hr} \rightarrow t_{p} = C_{1}C_{t}(LL_{c})^{0.3}$ $t_{r} = 25.5/5.5 = 4.64 \text{ hr} \rightarrow t_{p} = 5.5t_{r}$ $q_{p} = 2.75 \times 0.56/25.5 = 0.0604 \text{ m}^{3}/\text{s.km}^{2}.\text{cm} \rightarrow q_{p} = \frac{C_{2}C_{p}}{t_{p}}$

Required UH (6 hr UH)

 $t_{R} = 6 \text{ hr}$ $t_{pR} = 25.5 - (4.64 - 6)/4 = 25.8 \text{ hr} \Rightarrow t_{p} = t_{pR} + \frac{t_{r} - t_{R}}{4}$ $q_{pR} = 0.0604 \times 25.5/25.8 = 0.0597 \text{ m}^{3}/\text{s.km}^{2}.\text{cm} \Rightarrow q_{pR} = \frac{q_{p}t_{p}}{t_{pR}}$ Peak discharge = 0.0597 × 2,500 = 149.2 m³/s.cm

Width of UH

At 75% of q_{pR} , $W_{75\%} = 1.22 \times 0.0597^{-1.08} = 25.6 \text{ hr} \Rightarrow W = C_w q_{pR}^{-1.08}$ At 50% of q_{pR} , $W_{50\%} = 2.14 \times 0.0597^{-1.08} = 44.9 \text{ hr}$ $t_b = 5.56/0.0597 = 93 \text{ hr} \Rightarrow t_b = \frac{C_3}{q_{pR}}$

SCS Diminsionless UH

The SCS-UH is a synthetic unit hydrograph in which the discharge is expressed by

- The ratio of discharge: discharge (q) to peak discharge (q_p)
- \bullet The time: the ratio of the time (t) to the time of rise of the unit hydrograph (T_p)

Given the peak discharge and lag time for the duration of excess rainfall, the UH can be estimated from the synthetic dimensionless hydrograph for the given basin.

Direct Runoff

1.67Tp

Excess Rainfall

qp

tb

Diminsionless UH

The figure shows a dimensionless hydrograph, prepared from the unit hydrographs of variety of watersheds. The values of q_p and T_p may be estimated using a simplified model of triangular unit hydrograph.

Triangular UH

SCS Diminsionless UH

Ratios for dimensionless unit hydrograph and mass curve.

Time	Discharge	Mass	Time	Discharge	Mass
Ratios	Ratios	Curve	Ratios	Ratios	Curve
(†/† _p)	(q/q _p)	Ratios	(†/† _p)	(q/q _p)	Ratios
		(Q _a /Q)			(Q _a /Q)
0.0	0.000	0.000	1.6	0.560	0.751
0.1	0.030	0.001	1.7	0.460	0.790
0.2	0.100	0.006	1.8	0.390	0.822
0.3	0.190	0.012	1.9	0.330	0.849
0.4	0.310	0.035	2.0	0.280	0.871
0.5	0.470	0.065	2.2	0.207	0.908
0.6	0.660	0.107	2.4	0.147	0.934
0.7	0.820	0.163	2.6	0.107	0.953
0.8	0.930	0.228	2.8	0.077	0.967
0.9	0.990	0.300	3.0	0.055	0.977
1.0	1.000	0.375	3.2	0.040	0.984
1.1	0.990	0.450	3.4	0.029	0.989
1.2	0.930	0.522	3.6	0.021	0.993
1.3	0.860	0.589	3.8	0.015	0.995
1.4	0.780	0.650	4.0	0.011	0.997
1.5	0.680	0.700	4.5	0.005	0.999
			5.0	0.000	1.000

SCS Diminsionless UH

- SCS suggests the time of recession may be approximated as 1.67T_p.
- As the area under the unit hydrograph should be equal to a direct runoff of 1 cm.

- T_p = peak time, hr q_p = peak discharge, cms.m c = 2.08 A = the drainage area, sq.km.
- A study of unit hydrographs of many large and small rural watersheds indicates that the basin lag
 - t_p ; 0.6 t_c t_c = time of concentration of watersheds
- Time to rise, $\rm T_p$ can be expressed in terms of lag time, $\rm t_p$ and the duration of effective rainfall, $\rm t_r$

$$T_p = \frac{t_r}{2} + t_p$$

Construct a 10-minute SCS-UH for a basin of area 3.0 km2 and time of concentration 1.25 hr.

Solution The duration $t_r = 10 \text{ min} = 0.166 \text{ hr}$ Lag time $t_p = 0.6\text{Tc} = 0.6\text{x}1.25 = 0.75 \text{ hr}$ Rise time $T_p = \text{tr}/2 + \text{tp} = 0.166/2 + 0.75 = 0.833 \text{ hr}$ $q_p = 2.08\text{x}3.0/0.833 = 7.49 \text{ m3/s.cm} \Rightarrow q_p = \frac{CA}{T}$

The dimensionless hydrograph in the figure may be converted to the required dimensions by multiplying the values on the horizontal axis by T_p and those on the vertical axis by qp. Alternatively, the triangular unit hydrograph can be drawn with $t_b = 2.67T_p = 2.22$ hr. The depth of direct runoff is checked to equal 1 cm.

Unit Hydrograph

t/Tp	T (hr)	Q/Qp	Q (cms)
0	0	0	0
0.5	0.417	0.470	3.520
1	0.833	1.000	7.49
1.5	1.250	0.680	5.093
2	1.666	0.280	2.097
2.6	2.166	0.107	0.801
3	2.499	0.055	0.412
3.6	2.999	0.021	0.157
4	3.332	0.011	0.082
4.5	3.749	0.005	0.037
5	4.165	0	0

Chow, V.T., Maidment, D.R., & Mays, L.W. (1988). Applied hydrology. New York: McGraw-Hill Book Company.

LECTURE NOTES EGCE 323 HYDROLOGY

Asst.Prof.Dr.Areeya Rittima

Department of Civil and Environmental Engineering Faculty of Engineering Mahidol University E-mail: areeya.rit@mahidol.ac.th Revised in 2018

Flow/Flood Routing Analysis

- Channel Routing
- Reservoir Routing

FLOW ROUTING

Flow Routing

Flow routing is the process of predicting temporal and spatial variation of a flood wave as it travels through a river (or channel reach or reservoir).

FLOW ROUTING

Types of Flow Routing

Two types of routing can be performed: Hydrologic Routing (Lumped Routing)

- Flow is calculated as a function of time alone at a particular location.
- Governed by continuity equation and flow/storage relationship.

Hydraulic Routing (Distributed Routing)

- Flow is calculated as a function of space and time throughout the system.
- Governed by continuity and momentum equations.

Hydrologic Routing

In hydrologic routing techniques, the equation of continuity and some linear or curvilinear relation between storage and discharge within the river or reservoir is used.

Applications of routing techniques:

- Flood predictions
- Evaluation of flood control measurements
- Assessment of effects of urbanization
- Flood warning
- Spillway design for dams

Hydrologic Routing Continuity Equation:

Where

I = Inflow O = Outflow $\Delta S/\Delta t = Rate of change of storage$

Problem: You have a hydrograph at one location (I) You have river characteristics (S=f(I,O)) Need: A hydrograph at different location (O)

Hydrologic Routing

The hydrograph at B is attenuated due to storage characteristics of the stream reach. Assumption: no seepage, leakage, evaporation, or inflow from the sides.

Lumped Flow Routing

Three famous types of flow routing technique;

(1) Level Pool Method (Modified Puls)

Procedure for calculating outflow hydrograph Q(t) from a reservoir with horizontal water surface, given its inflow hydrograph I(t) and storage-outflow relationship. Storage is nonlinear function of Q.

(2) Muskingum Method

Muskingum method was developed for hydrologic river routing. Storage is linear function of I and Q.

(3) Series of Reservoir Models

Storage is linear function of Q and its time derivatives.

Chanel Routing

- Channel routing simulates the movement of water through a channel.
- It is used to predict the magnitudes, volumes, and temporal patterns of the flow (often a flood wave) as it translates down a channel.

Channel Routing Methods

- Muskingum Method
- Muskingum-Cunge Method

Muskingum Method: Flow in a Channel

> Muskingum Method Storage S=KO+KX(I-O) rewritten as

S=K[XI+(1-X)O]

Where

- S = Storage in the river reach
- K = Storage time constant (T)

X = A weighting factor that varies between 0 and 0.5 (defines relative importance of inflow and outflow on storage)If X=0.5 pure translation, if X=0 max attenuation

Muskingum Method

How it works: Write continuity equation as

$$\overline{I} - \overline{O} = \frac{\Delta S}{\Delta t}$$

Where

 $\overline{1} = \text{Average inflow during } \Delta t$ $\overline{0} = \text{Average outflow during } \Delta t$ or

$$\frac{I_1 + I_2}{2} - \frac{O_1 + O_2}{2} = \frac{S_2 - S_1}{\Delta t}$$

$$\frac{I_1 + I_2}{2} - \frac{O_1 + O_2}{2} = \frac{S_2 - S_1}{\Delta t}$$

S = k[XI - (1 - X)O]

Combine and rearrange

$$\frac{I_1 + I_2}{2} - \frac{O_1 + O_2}{2} = \frac{K}{\Delta t} [X(I_2 - I_1) + (1 - X)(O_2 - O_1)]$$

Simplified into the routing equation:

 $O_2 = C_0 I_2 + C_1 I_1 + C_2 I_0$

Subscript 1 refers to t_1 and 2 to $t_2 = (\dagger + \Delta \dagger)$

Muskingum Method

$$C_{0} = \frac{-KX + 0.5\Delta t}{K - KX + 0.5\Delta t}$$

$$C_{1} = \frac{KX + 0.5\Delta t}{K - KX + 0.5\Delta t}$$

$$C_{2} = \frac{K - KX - 0.5\Delta t}{K - KX + 0.5\Delta t}$$

$$C_{1} = \frac{K - KX - 0.5\Delta t}{K - KX + 0.5\Delta t}$$

 $C_0 + C_1 + C_2 = 1$

Need K and Δt in the same units

Estimation of K, X and Δt

K is estimated to be the travel time through the reach. This may pose somewhat of a difficulty, as the travel time will obviously change with flow. The travel time may be estimated using the kinematic travel time or a travel time based on Manning's equation.

 $K=0.6L/v_{avg}$

Where L = Length of river reach V_{avg} = Average velocity in reach Constraint K<tp/5 (divide reach up if needed) X = 0.2 for most cases X = 0.4 for steep channels with narrow flood plains X = 0.1 for mild channels with broad flood plains 2KX< Δt <2K(1-X) and ideally Δt <tp/5. Choose Δt in numbers that divide into 24 (daily data)

HYDROLOGIC ROUTING: EXAMPLE 1

Tp = 4 hr, L = 2 mi, v_{avg} = 2.5 ft/s, wide flat floodplain. Estimate K, X and Δt .

Solution

K = $0.6L/v_{avg} = 0.6(2x5280)/2.5=2,534 \text{ sec} = 0.7 \text{ hr}$ X = 0.1 Δt : 2KX = 2(0.7)0.1 = 0.14 2K(1-X) = 2(0.7)0.9 = 1.26 0.14< Δt <1.26 and Δt <tp/5 or Δt <0.8 hr, so Δt = 0.5 hr is most accurate.
CHANNEL ROUTING: EXAMPLE 2

Channel Routing in Excel Spreadsheet

Reservoir Routing

- Reservoir routing is used to determine the peak flow attenuation that a hydrograph undergoes as it enters a reservoir.
- Reservoir acts to store water and release through control structure later.

Reservoir Routing Methods

- Inflow-Storage-Discharge Curve Method (Puls Method)
- Storage-Indication Method (Modified Puls Method)

Storage-Indication Method

- Apply the storage-indication method for reservoirs that have a spillway.
- Assume that storage (S)=0 when no overflow occurs (surcharge storage).
- Apply this to an ungated spillway like a weir, outlet discharge pipe, or gated spillway with fixed position.

Storage-Indication Method

Use a relationship between outflow (O) and elevation head (H).

For uncontrolled weir outflow:

 $Q_{w} = CLH^{3/2}$

Where

Q_w = O = Discharge at the outlet (cfs) C = Discharge coefficient of weir (cfs) L = Length of crest (ft) H = Depth above spillway (ft)

Storage-Indication Method For controlled orifice outflow:

 $Q_o = CA_o \sqrt{2gH}$

Where $Q_o = O = Orifice discharge rate (cms)$ C = Orifice coefficient (cms) $A_o = Orifice area (cms)$ $g = gravitational constant (9.81 m/s^2)$ H = depth of water above the centre line of orifice (m)

Storage-Indication Method

Two relationships specific for reservoir:

- Storage-Head Relationship
- Outflow-Head Relationship

Need:

- An inflow hydrograph
- A starting elevation above spillway

Use the continuity equation as: Where | = Average inflow during Δt $\overline{I} - \overline{O} = \frac{\Delta S}{\Delta t}$

 $O = Average outflow during \Delta t$

Or

$$\frac{I_{i} + I_{i+1}}{2} - \frac{O_{i} + O_{i+1}}{2} = \frac{S_{i+1} - S_{i}}{\Delta t}$$

Where subscripts denote the time interva

Storage-Indication Method

For i=1, we know li and li+1 (Initially) and Si (Initially) We do not know Oi+1 and Si+1 So, we rewrite "Knowns = Unknowns"

$$\mathbf{I}_{i} + \mathbf{I}_{i+1} + \frac{2\mathbf{S}_{i}}{\Delta t} - \mathbf{O}_{i} = \frac{2\mathbf{S}_{i+1}}{\Delta t} + \mathbf{O}_{i+1}$$

Storage-Indication Method

We can find Oi+1, if we have a relationship between term on RHS and O. This is possible using the so-called "**Storage-Indication Curve**".

Storage-Indication Method: Routing Steps

- Set i=1, obtain initial head and inflow hydrograph.
- Find initial outflow O₁ corresponding to initial head above spillway.
- Find $2S/\Delta t$ for S(H) relationship.
- Find 23/21 101 S(1), recent From the continuity equation, calculate $\frac{2S_2}{4+} + O_2$
- Enter storage-indication curve to find O_2 .

Calculate
$$\frac{2S_2}{\Delta t} - O_2 = \left[\frac{2S_2}{\Delta t} + O_2\right] - 2O_2$$

- Change i=2
- From continuity equation, calculate

$$\frac{2S_3}{\Delta t} + O_3$$

Repeat steps 4-7, and so on.....

RESERVOIR ROUTING: EXAMPLE 3

Reservoir Routing in Excel Spreadsheet

Chow, V.T., Maidment, D.R., & Mays, L.W. (1988). Applied hydrology. New York: McGraw-Hill Book Company.

LECTURE NOTES EGCE 323 HYDROLOGY

Asst.Prof.Dr.Areeya Rittima

Department of Civil and Environmental Engineering Faculty of Engineering Mahidol University E-mail: areeya.rit@mahidol.ac.th Revised in 2018

LECTURE OUTLINE

Peak Flow Analysis

- Methods for Peak Flow Estimation
- Empirical Method
- Rational Method

PEAK FLOW ANALYSIS

Estimation of Peak Flow

- For the purpose of designing any hydraulic structure, one needs to know the magnitude of the peak flow/flood that can be expected with an assigned frequency during the life of the structure.
- Estimation of peak flow rates from small and mid-size watersheds is a common application of engineering hydrology.
- Simpler approaches are justified when designing small hydraulic structures such as culverts or storm drainage systems.
- For these design problems, peak flows usually provide information to determine the appropriate pipe size.

PEAK FLOW ANALYSIS

Estimation of Peak Flow

The following alternative methods are used for estimation of the peak flow:

- Empirical Method
- Rational Method
- Unit Hydrograph Method
- Flood Frequency Method

The choice of a method for estimation of the peak flow primarily depends upon the importance of the work and available data.

PEAK FLOW ANALYSIS: EMPIRICAL METHOD

Empirical Method

The empirical relations are based on statistical correlation between the observed peak flow, Qp (cms) and the area of the catchment, A (km²) in a given region.

The following empirical relations are often used:

- Dicken's formula
- Ryves formula
- Inglis formula
- Envelope curve technique
- Fanning formula
- Myers formula

PEAK FLOW ANALYSIS: EMPIRICAL METHOD

Empirical Method

- Fanning Formula
- $Q = CA^{5/6}$
- Where Q = Peak flow (cfs)
 - A = Area (sq.mi.)
 - C = Constant value (equal to 200 for Q=cfs)
- Myers Formula
 Q = 100pA^{1/2}
 Where Q = Max flow (cfs)
 p = Myers rating
 A = Area (sq.mi.)

PEAK FLOW ANALYSIS: EMPIRICAL METHOD

Empirical Method

- For the above formulas, there is no attempt to consider rainfall amounts or intensities as parameter, or to relate the value of q to any probability or return period.
- They simply provide an upper limit of Q that would represent an extremely conservative design flow value.
- Most designs are based on a return period (highway culverts: 50 year return period)
- A frequency analysis using peak flows from gaged stream flow would provide desired peak flow.
- Drawbacks: gaged data may not exist, watershed may have changed land use, gaged data may not be at the location of design.

Rational Method

The runoff rate during and after precipitation of uniform intensity and long duration typically varies as shown in the figure.

The runoff increases from zero to a constant peak value when the water from the farthest area of the catchment basin reaches the basin outlet.

If tc= time taken for water from the farthest part of catchment to reach the outlet and the rainfall continues beyond tc, the runoff will have attained constant peak value. When the rain stops the runoff start decreasing.

Rational Method

- Developed in 1800s in England as the first dimensionally correct equation.
- Used by 90% of engineers still today.
- Equation assumes that Q is a function of rainfall intensity applied uniformly over the watershed for a duration D.
- Equation also assumes that frequency of Q is equal to frequency of rainfall intensity.
- The proper rainfall duration is equal to the time of concentration.

Rational Method: Metric Unit

The peak value of runoff, Qp (cms) is given as;

$$Q_{P} = \frac{1}{36} CiA$$

Where C = Coefficient of runoff depending upon the nature of the catchment surface and the rainfall intensity, i

 i = The mean intensity of rainfall (mm/hr) for a duration equal to or exceeding tc and an exceedance probability, P

A = Catchment area (km²)

Rational Method: English Unit

The equation is;

Q = 1.008CIA

Where Q = Peak flow (cfs) C = Dimensionless coefficient of runoff I = Average rainfall intensity (in/hr) A = Catchment area (acre) 1.008 = Unit conversion factor
The conversion factor is usually ignored.

What is needed?

- (1) Time of concentration
- (2) A set of rainfall intensity-duration-frequency curve (IDF curve)
- (3) Drainage area size
- (4) An estimate of the coefficient C

Time of Concentration

Time of concentration, tc can be obtained from Kirpich equation.

 $t_{\rm C} = 0.01947 L^{0.77} S^{-0.386}$

- tc = Time of concentration in minutes
- L = The maximum length of travel of water from the upstream end of the catchment basin to the basin
- S = The slope of catchment which is equal to $\Delta H/L$
- ΔH = The difference of elevations of the upstream end of the catchment and the outlet.

Source: Chow et al. (1988)

IDF Curve

Rainfall Depth

Coefficient of Runoff

Type of Surface	Value of C
Wooded area	0.01-0.20
Parks, open spaces lawns, meadows	0.05-0.30
Unpaved streets, vacant lands	0.10-0.30
Gravel roads and walks	0.15-0.30
Macadamized roads	0.25-0.60
Inferior block pavements with open joints	0.40-0.50
Stone, brick and wood-block pavements with open or uncemented joints	0.40-0.70
Stone, brick and wood-block pavements with tightly cemented joints	0.75-0.85
Asphalt pavements in good order	0.85-0.90
Watertight roof surfaces	0.75-0.90

Coefficient of Runoff

- C is know as runoff coefficient and can be found for the different land uses.
- If land use is mixed, you can calculate a composite C value as follows:

 $C = (C_A A_A + C_B A_B) / (A_A + A_B) \text{ or}$ $C = (\sum C_i A_i) / (A_i)$

Where $C_A, C_B = C$ values for land use A and B $A_A, A_B =$ Areas of land use A and B $C_i, A_i = C$ and A for land use i

A storm drain system consisting of two inlets and pipe is to be designed using rational method. A schematic of the system is shown. Determine the peak flow rates to be used in sizing the two pipes and inlets.

Rainfall intensity (in/hr) as a function of t is:

> Size Inlet 1 and pipe 1: Area A and B contribute Take largest tc = 12 min

A = 5+3 = 8 acre C = (5*0.2+3*0.3)/8 = 0.24I = $30/(12+5)^{0.7} = 4.13$ in/hr Q = CIA = 0.24*4.13*8 = 7.9 cfs

> Size Inlet 2: Flow from area C contributes Take tc = 8 min

> A = 4 acre C = 0.4 I = $30/(8+5)^{0.7}$ = 4.98 in/hr Q = CIA = 0.4*4.98*4 = 8.0 cfs

> Size pipe 2: Flow from all areas Take tc = 12+1 = 13 min

A = 5+4+3 = 12 acreC = $(5^{*}0.2+4^{*}0.4+3^{*}0.3)/12$ = 0.29I = $30/(13+5)^{0.7} = 3.97 \text{ in/hr}$ Q = CIA = $0.29^{*}3.97^{*}12 = 13.8 \text{ cfs}$

Note: tc is taken as the largest value (12 min) plus travel trough pipe1.

Chow, V.T., Maidment, D.R., & Mays, L.W. (1988). Applied hydrology. New York: McGraw-Hill Book Company.

LECTURE NOTES EGCE 323 HYDROLOGY

Asst.Prof.Dr.Areeya Rittima

Department of Civil and Environmental Engineering Faculty of Engineering Mahidol University E-mail: areeya.rit@mahidol.ac.th Revised in 2018

LECTURE OUTLINE

Hydrologic Statistics

- Hydrologic Statistics
- Frequency and Probability Functions
- Statistical Parameters
- Fitting a Probability Distribution
- Probability Distribution for Hydrologic Variables

HYDROLOGIC STATISTICS

Hydrological Data

The hydrologic processes are measured as;

Point Sample

- Measurements made through time at a fixed location in space.
- The resulting data forms a "Time Series".

Distributed Samples

- Measurement made over a line or area in space at a specific point in time.
- The resulting data forms a "Space Series".

The hydrologic processes evolve in space and time.

HYDROLOGIC STATISTICS

Hydrological Processes

The hydrologic process is partly predictable or "**Deterministic Process**".

Some hydrologic process is partly unpredictable (random) or "**Stochastic Process**"

- X = random variable described by probability distribution.
- x = observation of the variable.
- x1, x2, x3,..., xn = Set of observation of random variable = "Sample".
HYDROLOGIC STATISTICS

Population vs Sample

It is assumed that samples are drawn from an infinite population possessing constant statistical properties.

HYDROLOGIC STATISTICS

- P(A) = Probability of Event A
- $P(A) = \lim(nA/n) ; n \rightarrow \infty$
- nA/n = relative frequency
- Sample Space: the set of all possible sample that could be drawn from the population.
- Event: a subset of sample space.

HYDROLOGIC STATISTICS

Statistic Law • Total Probability $P(A1)+P(A2)+....+P(Am) = P(\Omega) = 1$

Complementarity

P(A) = 1 - P(A)

Conditional Probability

-Dependent Events $P(A \cap B) = P(B/A)*P(A)$ $P(B/A) = P(A \cap B)/P(A)$ -Independent Events P(B/A) = P(B) $P(A \cap B) = P(B)*P(A)$

HYDROLOGIC STATISTICS: EXAMPLE 1

The values of annual precipitation in College Station, Texas, from 1911 to 1979 are shown in table and plotted as a time series in the figure.

What is the probability that the annual precipitation R in any year will be less than 35 in? Between 35 and 45 in?

Year	1910	1920	1930	1940	1950	1960	1970
0		48.7	44.8	49.3	31.2	46.0	33.9
1	39.9	44.1	34.0	44.2	27.0	44.3	31.7
2	31.0	42.8	45.6	41.7	37.0	37.8	31.5
3	42.3	48.4	37.3	30.8	46.8	29.6	59.6
4	42.1	34.2	43.7	53.6	26.9	35.1	50.5
5	41.1	32.4	41.8	34.5	25.4	49.7	38.6
6	28.7	46.4	41.1	50.3	23.0	36.6	43.4
7	16.8	38.9	31.2	43.8	56.5	32.5	28.7
8	34.1	37.3	35.2	21.6	43.4	61.7	32.0
9	56.4	50.6	35.1	47.1	41.3	47.4	51.8

So, $P(A) \approx 23/69 = 0.333$ $P(B) \approx 19/69 = 0.275$

The probability that the annual precipitation is between 35 and 45 in can be calculated

$$P(35.0 \le R \le 45.0) = 1 - P(R < 35.0) - P(R > 35.0)$$

= 1-0.333-0.275
= 0.392

HYDROLOGIC STATISTICS: EXAMPLE 2

Assuming that annual precipitation in College Station is an independent process, calculate the probability that there will be two successive years of precipitation less than 35.0 in. Compare this estimated probability with the relative frequency of this event in the data set from 1911 to 1979.

Solution

Let C be the event that R < 35.0 in for two successive years. From Example 1, P(R < 35.0 in) = 0.333, and assuming independent annual precipitation. $P(C) = [P(R < 35.0)]^2$ $= (0.333)^2 = 0.111$

From the data set, there are 9 pairs of successive years of precipitation less than 35.0 in out of 68 possible such pairs, so from a direct count it would be estimated that

P(C) = nc/n= 9/68 = 0.132

Frequency & Probability Functions

- If the observations in a sample are identically distributed, they can be arranged to form a frequency histogram.
- First, the feasible range of the random variable is divided into discrete intervals, then the number of observations falling into each intervals is counted, and finally the result is plotted as a bar graph.
- The width Δx of the interval used in setting up the frequency histogram is chosen to be as small as possible.

Frequency & Probability Functions

• If the number of observations n_i in interval i, covering the range $[x_i-\Delta x, x_i]$, is divided by the total number of observations n, the result is called "**Relative Frequency Function**, $f_s(x_i)$ ".

$$f_s(x_i) = \frac{n_i}{n}$$

- This is an estimate of $P(x_i \Delta x \le X \le x_i)$, the probability that the random variable X will lie in the interval $[x_i \Delta x, x_i]$.
- The subscript s indicates that the function is calculated from sample data.

Frequency & Probability Functions

The sum of the values of the relative frequencies up to a given point is the "Cumulative Frequency Function, F_s(xi)".

$$F_{s}(x_{i}) = \sum_{j=1}^{i} f_{s}(x_{j})$$

- This is an estimate of $P(X \le x_i)$, the cumulative probability of x_i .
- The relative frequency and cumulative frequency functions are defined for a sample.

Frequency & Probability Functions

• Corresponding functions for the population are approached as limits as $n \rightarrow \infty$ and $\Delta x \rightarrow 0$. In the limit, the relative frequency function divided by the interval length Δx becomes the "**Probability Density Function**, f(x)/PDF".

$$f(x) = \lim_{\substack{n \to \infty \\ \Delta x \to 0}} \frac{f_s(x)}{\Delta x}$$

The cumulative frequency function becomes the "Probability Distribution Function/Cumulative Distribution Function (CDF)".

$$F(x) = \lim_{\substack{n \to \infty \\ \Delta x \to 0}} F_s(x)$$

Whose the derivative is the probability density function.

$$f(x) = \frac{dF(x)}{dx}$$

Frequency & Probability Functions

From the point of view of fitting sample data to a theoretical distribution, the 4 functions

(1) Relative Frequency Function, fs(xi) or p(xi)

- (2) Cumulative Frequency Function, Fs(xi)
- (3) Probability Density Function, f(xi)
- (4) Cumulative Distribution Function, F(xi)

May be arranged in a cycle as shown in the figure.

Frequency & Probability Functions

Relative Frequency Function

The relative frequency function is computed from a sample data divided into intervals.

Cumulative Frequency Function

The relative frequency function is accumulated to form the cumulative frequency function shown at the lower left.

Probability Density Function, PDF

The probability distribution function, at the upper right, is the value of the slope of the distribution function for a specified value of x.

Cumulative Distribution Function, CDF

The cumulative distribution function, at the lower right, is the theoretical limit of the cumulative frequency function as the sample size becomes infinitely large and the data interval infinitely small.

Frequency & Probability Functions

$$p(x_i) = P(x_i - \Delta x \le X \le x_i)$$
$$= F(x_i) - F(x_{i-1})$$

- The Relative Frequency Function, Cumulative Frequency Function, and Cumulative Distribution Function are all dimensionless functions varying over the range [0,1].
- The **Probability Density Function** f(x) = dF(x)/dx) has dimensions $[X]^{-1}$ and varies over the range $[0,\infty)$

PROBABILITY FUNCTIONS: NORMAL PROBABILITY DISTRIBUTION

Normal Probability Distribution

One of the best-known probability density functions is that forming the familiar bell-shaped curve for the normal distribution.

 μ , σ = parameter This function can be simplified by defining the "**Standard Normal Variable**, z".

PROBABILITY FUNCTIONS: NORMAL PROBABILITY DISTRIBUTION

Standard Normal Variable, z

$$z = \frac{x - \mu}{\sigma}$$

The corresponding standard normal distribution has PDF:

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2} \quad -\infty \le z \le \infty$$

Which depends only on the value of x and is plotted in the figure.

PROBABILITY FUNCTIONS: NORMAL PROBABILITY DISTRIBUTION-Z TABLEUni

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

To employ the table for

 $F_{z}(z) = 1 - F_{z}(|z|)$ where $F_z(|z|)$ is the tabulated value.

4-7-0

Wisdom

z < 0, use

PROBABILITY FUNCTIONS: NORMAL PROBABILITY DISTRIBUTION

F(z) values are tabulated in the table and may be approximated by the following polynomial (Abramowitz and Stegun, 1965) :

$$B = \frac{1}{2} \begin{bmatrix} 1+0.196854|z|+0.115194|z|^{2} \\ +0.000344|z|^{3}+0.019527|z|^{4} \end{bmatrix}^{-4}$$

F(Z) = B for z < 0
= 1-B for z ≥ 0

The error in F(z) as evaluated by this formula is less than 0.00025.

HYDROLOGIC STATISTICS: EXAMPLE 3

What is the probability that the standard normal random variable z will be less than -2? Less than 1?. What is P(-2 < z < 1).

Solution $P(z \le -2) = F(-2)$ |z|=|-2|=2

 $B = \frac{1}{2}[1+0.196854x2=0.115194x(2)^{2}+0.000344x(2)^{3}+0.019527x(2)^{4}]^{-4}$ = 0.023

Therefore; F(-2) = B = 0.023

HYDROLOGIC STATISTICS: EXAMPLE 3

 $P(z \le 1) = F(1)$ |z|=|1|=1

 $B = \frac{1}{2}[1+0.196854x1=0.115194x(1)^{2}+0.000344x(1)^{3}+0.019527x(1)^{4}]^{-4}$ = 0.159

Therefore; F(1) = 1-B = 1-0.159 = 0.841

```
Finally, P(-2 \le z \le 1) = F(1) - F(-2)
= 0.841-0.023
= 0.818
```


STATISTICAL PARAMETERS

Statistical Parameters

- The objective of statistics is to extract the essential information from a set of data, reducing a large set of numbers to a small set of numbers.
- Statistics are numbers calculated from a sample which summarize its important characteristics.
- Statistical parameters are characteristics of a population such as μ and $\sigma.$

STATISTICAL PARAMETERS

Population Parameters and Sample Statistics

The effect on the PDF of changes in the standard deviation and coefficient of skewness.

HYDROLOGIC STATISTICS: EXAMPLE 4

Calculate the sample mean, sample standard deviation, and sample coefficient of skewness of the data for annual precipitation in College Station, Texas from 1970 to 1979. The data is given in the table.

Solution

$$\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i = \frac{401.7}{10} = 40.17$$
in

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1,016.9}{9} = 113.0 \text{ in}^{2}$$

$$S = (113.0)^2 = 10.63$$
 in

$$C_{s} = \frac{n_{\sum i=1}^{n} (x_{i} - \overline{x})^{3}}{(n-1)(n-2)s^{3}} = \frac{10x6,480.3}{9x8x(10.63)^{3}} = 0.749$$

HYDROLOGIC STATISTICS: EXAMPLE 4

Year	Precipitation, x	(X-X) ²	(x-x) ³
1970	33.9	39.3	-246.5
1971	31.7	71.7	-607.6
1972	31.5	75.2	-651.7
1973	59.6	377.5	7,335.3
1974	50.5	106.7	1,102.3
1975	38.6	2.5	-3.9
1976	43.4	10.4	33.7
1977	28.7	131.6	-1,509.0
1978	32.0	66.7	-545.3
1979	51.8	135.3	1,573.0
Total	401.7	1,016.9	6,480.3

PARAMETER ESTIMATION

Parameter Estimation Methods

- Method of Moments
- Method of Maximum Likelihood

PARAMETER ESTIMATION METHODS: METHOD OF MOMENTS

Method of Moments

The method of moments was first developed by Karl Pearson in 1902. He considered that

"The good estimate of parameters of a probability distribution are those for which moments of the probability density function about the origin are equal to the corresponding moments of the sample data".

PARAMETER ESTIMATION METHODS: METHOD OF MAXIMUM LIKELIHOOD

Method of Maximum Likelihood

The method of maximum likelihood was developed by R.A. Fisher in 1922. He reasoned that

"The best value of a parameter of a probability distribution should be that value which maximizes the likelihood or joint probability of occurrence of observed sample".

$$InL = \sum_{i=1}^{n} In \left[f(x_i) \right]$$

- The method of maximum likelihood is the most theoretically correct method of fitting probability distributions to data in the sense that it produces the most efficient parameter estimates.
- In general, the method of moments is easier to apply than the method of maximum likelihood and is more suitable for practical hydrologic analysis.

Graphical Method

- To check the probability distribution fitting, the data may be plotted on specially "Designed Probability Paper" or using a plotting scale that linearizes the distribution function.
- The plotted data are then fitted with a straight line for interpolation and extrapolation purposes.

Probability Paper: Normal

papergraph.com @ 3.0 by-rc-sa Pers Millán

Probability Paper: Log-Normal

Probability Paper: Exponential

papergraph.com 😨 3.0 by-nc-sa Pers Millán

Probability Paper: Gumbel

papargraph.com @ 3.0 by-nc-sa Pass Millán

HYDROLOGIC STATISTICS: EXAMPLE5-GRAPHICAL METHOD

The maximum annual flood of the Mae Kong river, Loas since 2466-2508 is shown in the table. Perform a probability plotting analysis with the Gumbel distribution.

Year	Max Annual Flood	Descending	n	Plotting Position
2466	19,300	22,900	1	2.273
2467	21,200	21,200	2	4.545
2468	14,000	20,500	3	6.817
2469	17,700	20,200	4	9.091
2470	17,500	19,400	5	11.364
2471	15,500	19,300	6	13.643
2472	20,500	19,100	7	15.924
2473	18,100	18,900	8	18.182
2474	15,800	18,300	9	20.450
2475	14,900	18,300	10	22.727
2476	16,300	18,200	11	25.000

HYDROLOGIC STATISTICS: EXAMPLE 5-GRAPHICAL METHOD

Year	Max Annual Flood	Descending	n	Plotting Position
2477	14,900	18,100	12	27.248
2478	17,600	18,000	13	29.586
2479	17,000	18,000	14	31.847
2480	17,300	17,900	15	34.130
2481	18,300	17,700	16	36.364
2482	19,100	17,700	17	38.610
2483	17,900	17,600	18	40.984
2484	19,400	17,500	19	43.103
2485	22,900	17,300	20	45.455
2486	16,200	17,300	21	47.619
2487	14,300	17,200	22	50.00
2488	20,200	17,000	23	52.356
2489	17,700	16,300	24	54.645

HYDROLOGIC STATISTICS: EXAMPLE 5-GRAPHICAL METHOD

Year	Max Annual Flood	Descending	n	Plotting Position
2490	18,900	16,300	25	56.818
2491	15,600	16,300	26	59.880
2492	14,800	16,200	27	61.350
2493	15,200	15,800	28	63.694
2494	16,300	15,800	29	65.789
2495	17,300	15,700	30	68.493
2496	14,100	15,600	31	70.423
2497	15,700	15,500	32	72.460
2498	18,000	15,400	33	75.190
2499	16,300	15,200	34	77.520
2500	11,300	14,900	35	79.370
2501	11,500	14,900	36	81.970
2502	18,000	14,800	37	84.030

HYDROLOGIC STATISTICS: EXAMPLE 5-GRAPHICAL METHOD

Year	Max Annual Flood	Descending	n	Plotting Position
2503	18,200	14,100	38	86.210
2504	18,300	14,000	39	88.500
2505	15,400	14,000	40	90.910
2506	15,800	14,000	41	93.460
2507	17,200	11,500	42	95.240
2508	14,000	11,300	43	98.040
HYDROLOGIC STATISTICS: EXAMPLE 5-GRAPHICAL METHOD

Probability of Exceedance (%)

Return Period (Year)

TESTING OF GOODNESS OF FIT: CHI-SQUARE METHOD

Chi-Square Method

The goodness of fit of a probability distribution can be tested by comparing the **theoretical and sample values of the relative frequency or the cumulative frequency function**.

The chi-square test statistic is given by

$$X_{C}^{2} = \sum_{i=1}^{\Sigma} \frac{n[f_{s}(x_{i}) - p(x_{i})]^{2}}{p(x_{i})}$$

m = the number of intervals $nf_s(x_i) = n_i$ the observed number of occurrences in interval i $np(x_i) =$ the corresponding expected number of occurrences in interval

TESTING OF GOODNESS OF FIT: CHI-SQUARE METHOD

- To describe the χ^2 test, the χ^2 probability distribution must be defined.
- A χ² distribution with v degrees of freedom is the distribution for the sum of squares of v independent standard normal random variables z_i. This sum is the random variable.

$$\chi^2_\nu = \mathop{\scriptstyle \sum}\limits_{i=1}^{\nu} z_i^2$$

v = m-p-1 = degree of freedom m = number of intervals p = number of parameters $\alpha = significant level$ $1-\alpha = confident level$

• The null hypothesis for a test is that the proposed probability distribution fits the data adequately. This hypothesis is rejected if the value of χ^2_c in the formula is larger than a limiting value $\chi^2_{\nu,l-\alpha}$.

TESTING OF GOODNESS OF FIT: CHI-SQUARE STATISTICS

P
χ ²

Mahidol

University Wisdom of the Land

DF	0.995	0.975	0.20	0.10	0.05	0.025	0.02	0.01	0.005	0.002	0.001
1	0.0000393	0.000982	1.642	2.706	3.841	5.024	5.412	6.635	7.879	9.550	10.828
2	0.0100	0.0506	3.219	4.605	5.991	7.378	7.824	9.210	10.597	12.429	13.816
3	0.0717	0.216	4.642	6.251	7.815	9.348	9.837	11.345	12.838	14.796	16.266
4	0.207	0.484	5.989	7.779	9.488	11.143	11.668	13.277	14.860	16.924	18.467
5	0.412	0.831	7.289	9.236	11.070	12.833	13.388	15.086	16.750	18.907	20.515
6	0.676	1.237	8.558	10.645	12.592	14.449	15.033	16.812	18.548	20.791	22.458
7	0.989	1.690	9.803	12.017	14.067	16.013	16.622	18.475	20.278	22.601	24.322
8	1.344	2.180	11.030	13.362	15.507	17.535	18.168	20.090	21.955	24.352	26.124
9	1.735	2.700	12.242	14.684	16.919	19.023	19.679	21.666	23.589	26.056	27.877
10	2.156	3.247	13.442	15.987	18.307	20.483	21.161	23.209	25.188	27.722	29.588
11	2.603	3.816	14.631	17.275	19.675	21.920	22.618	24.725	26.757	29.354	31.264
12	3.074	4.404	15.812	18.549	21.026	23.337	24.054	26.217	28.300	30.957	32.909
13	3.565	5.009	16.985	19.812	22.362	24.736	25.472	27.688	29.819	32.535	34.528
14	4.075	5.629	18.151	21.064	23.685	26.119	26.873	29.141	31.319	34.091	36.123
15	4.601	6.262	19.311	22.307	24.996	27.488	28.259	30.578	32.801	35.628	37.697
16	5.142	6.908	20.465	23.542	26.296	28.845	29.633	32.000	34.267	37.146	39.252
17	5.697	7.564	21.615	24.769	27.587	30.191	30.995	33.409	35.718	38.648	40.790
18	6.265	8.231	22.760	25.989	28.869	31.526	32.346	34.805	37.156	40.136	42.312
19	6.844	8.907	23.900	27.204	30.144	32.852	33.687	36.191	38.582	41.610	43.820
20	7.434	9.591	25.038	28.412	31.410	34.170	35.020	37.566	39.997	43.072	45.315
21	8.034	10.283	26.171	29.615	32.671	35.479	36.343	38.932	41.401	44.522	46.797
22	8.643	10.982	27.301	30.813	33.924	36.781	37.659	40.289	42.796	45.962	48.268
23	9.260	11.689	28.429	32.007	35.172	38.076	38.968	41.638	44.181	47.391	49.728
24	9.886	12.401	29.553	33.196	36.415	39.364	40.270	42.980	45.559	48.812	51.179
25	10.520	13.120	30.675	34.382	37.652	40.646	41.566	44.314	46.928	50.223	52.620
26	11.160	13.844	31.795	35.563	38.885	41.923	42.856	45.642	48.290	51.627	54.052
27	11.808	14.573	32.912	36.741	40.113	43.195	44.140	46.963	49.645	53.023	55.476
28	12.461	15.308	34.027	37.916	41.337	44.461	45.419	48.278	50.993	54.411	56.892
29	13.121	16.047	35.139	39.087	42.557	45.722	46.693	49.588	52.336	55.792	58.301
30	13.787	16.791	36.250	40.256	43.773	46.979	47.962	50.892	53.672	57.167	59.703

HYDROLOGIC STATISTICS: EXAMPLE 6-CHI-SQUARE METHOD

Test goodness of fit of annual precipitation in College Station, Texas, in Example1 with the Normal distribution.

Interval	Range (in)	n _i	$f_s(x_i)$	F _s (x _i)	Zi	F(x _i)	f(x _i)	χ _c
1	< 20	1	0.014	0.014	-2.157	0.015	0.015	0.004
2	20-25	2	0.029	0.043	-1.611	0.053	0.038	0.147
3	25-30	6	0.087	0.130	-1.065	0.144	0.090	0.008
4	30-35	14	0.203	0.333	-0.520	0.301	0.158	0.891
5	35-40	11	0.159	0.493	0.026	0.510	0.209	0.805
6	40-45	16	0.232	0.725	0.571	0.716	0.206	0.222
7	45-50	10	0.145	0.870	1.117	0.868	0.151	0.019
8	50-55	5	0.072	0.942	1.662	0.952	0.084	0.114
9	55-60	3	0.043	0.986	2.208	0.986	0.034	0.163
10	> 60	1	0.014	1.000	2.753	1.000	0.014	0.004
Total		69	1.000				1.000	2.377
Avg.	39.77							
Stdev.	9.17							

HYDROLOGIC STATISTICS: EXAMPLE 6-CHI-SQUARE METHOD

HYDROLOGIC STATISTICS: PROBABILITY DISTRIBUTIONS

Distribution	Probability density function	Range	Equations for parameters in terms of the sample moments
Normal	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	$-\infty \le x \le \infty$	$\mu=\overline{x},\ \sigma=s_x$
Lognormal	$f(x) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left(-\frac{(y-\mu_y)^2}{2\sigma_y^2}\right)$	<i>x</i> > 0	$\mu_y = \overline{y}, \ \sigma_y = s_y$
	where $y = \log x$		
Exponential	$f(x) = \lambda e^{-\lambda x}$	$x \ge 0$	$\lambda = \frac{1}{\overline{x}}$
Gamma	$f(x) = \frac{\lambda^{\beta} x^{\beta - 1} e^{-\lambda x}}{\Gamma(\beta)}$	$x \ge 0$	$\lambda = \frac{\overline{x}}{s_x^2}$
	where Γ = gamma function		$\beta = \frac{\overline{x}^2}{s_x^2} = \frac{1}{CV^2}$

Source: Chow et al. (1988)

HYDROLOGIC STATISTICS: PROBABILITY DISTRIBUTIONS

Faustions for narameters

Distribution	Probability density function	Range	in terms of the sample moments
Pearson Type III (three parameter gamma)	$f(x) = \frac{\lambda^{\beta}(x-\epsilon)^{\beta-1}e^{-\lambda(x-\epsilon)}}{\Gamma(\beta)}$	$x \ge \epsilon$	$\lambda = rac{s_x}{\sqrt{eta}}, \ eta = \left(rac{2}{C_s} ight)^2$
			$\epsilon = \bar{x} - s_x \sqrt{\beta}$
Log Pearson Type III	$f(x) = \frac{\lambda^{\beta}(y-\epsilon)^{\beta-1}e^{-\lambda(y-\epsilon)}}{x\Gamma(\beta)}$	$\log x \geq \epsilon$	$\lambda = \frac{s_y}{\sqrt{\beta}},$
	where $y = \log x$		$\beta = \left[\frac{2}{C_s(y)}\right]^2$
			$\epsilon = \overline{y} - s_y \sqrt{\beta}$ (assuming $C_s(y)$ is positive)
Extreme Value Type I	$f(x) = \frac{1}{\alpha} \exp\left[-\frac{x-u}{\alpha} - \exp\left(-\frac{x-u}{\alpha}\right)\right]$	$\left(\frac{-u}{\alpha}\right)$	$\alpha = \frac{\sqrt{6}s_x}{\pi}$
		$-\infty < x < \infty$	
			$u = \bar{x} - 0.5772\alpha$

Source: Chow et al. (1988)

TESTING OF GOODNESS OF FIT: KOLMOGOROV-SMIRNOV METHOD

Kolmogorov-Smirnov Method (KS)

The K-S test statistic measures the largest distance between the $F(x_i)$ and the theoretical function F'(x_i), measured in a vertical direction (Kolmogorov as cited in Stephens 1992).

The test statistic is given by:

$$\Delta = \left| \mathsf{F}'(\mathsf{x}_{\mathsf{j}}) - \mathsf{F}(\mathsf{x}_{\mathsf{j}}) \right|$$

Where (for a two-tailed test): $F(x_i) =$ the cdf of the hypothesized distribution $F'(x_i) =$ the empirical distribution function of observed data

TESTING OF GOODNESS OF FIT: KOLMOGOROV-SMIRNOV STATISTICS

Ν	α						
	0.20	0.10	0.05	0.01			
5	0.45	0.51	0.56	0.67			
10	0.32	0.37	0.41	0.49			
15	0.27	0.30	0.34	0.40			
20	0.23	0.26	0.29	0.36			
25	0.21	0.24	0.27	0.32			
30	0.19	0.22	0.24	0.29			
35	0.18	0.20	0.23	0.27			
40	0.17	0.19	0.21	0.25			
45	0.16	0.18	0.20	0.24			
50	0.15	0.17	0.19	0.23			
N>50	1.07	1.22	1.36	1.63			
	$\frac{1}{\sqrt{N}}$	$\frac{1}{\sqrt{N}}$	$\frac{1}{\sqrt{N}}$	$\overline{\sqrt{N}}$			

X

The maximum annual flood of the Mae Kong river, Loas since 2466-2508 is shown in the table. Perform a probability fitting analysis with the Gumbel distribution by using Kolmogorov-Smirnov method.

Solution

$$=\frac{1}{n}\sum_{i=1}^{n} x_i = \frac{725,500}{43} = 16,827.093$$

$$S_{X} = \sqrt{\frac{\sum_{i=1}^{N} X_{i}^{2} - N\overline{X}^{2}}{N-1}} = \frac{\sqrt{12,471.45 \times 10^{6} - 43 \times (16,872.093)^{2}}}{42}$$

= 2,343.91

 $x_0 = x - 0.45S_x$ = 16,872.093 - 0.45x2,343.91 = 15,817.33

 $\alpha = 0.7797S_{\rm X} = 0.7797(2343.91) = 1,827.55$

$$F(X) = \exp[-\exp[-(\frac{X - 15,817.33}{1,827.55})]$$

Plotting Position:

$$F'(X) = \frac{m}{n+1}$$

No.	Max Annual Flood	F'(X), %	F(X), %	$\Delta = abs[F'(X)-F(X)]$
1	11,300	2.273	0.0007	2.27
2	11,500	4.545	0.002	4.54
3	14,000	6.817	6.7	0.12
4	14,000	9.091	6.7	2.36
5	14,000	11.364	6.7	4.66
6	14,100	13.643	7.7	5.94
7	14,800	15.924	17.5	1.58
8	14,900	18.182	19.2	1.02
9	14,900	20.450	19.2	1.25
10	15,200	22.727	24.6	1.87
11	15,400	25.000	28.5	3.5

No.	Max Annual Flood	F'(X), %	F(X), %	$\Delta = abs[F'(X)-F(X)]$
12	15,500	27.248	30.4	3.15
13	15,600	29.586	32.4	2.81
14	15,700	31.847	34.4	2.55
15	15,800	34.130	36.4	2.27
16	15,800	36.364	36.4	0.04
17	16,200	38.610	44.4	5.97
18	16,300	40.984	46.4	5.42
19	16,300	43.103	46.4	3.30
20	16,300	45.455	46.4	0.95
21	17,000	47.619	59.2	11.58
22	17,200	50.000	62.5	12.5*

No.	Max Annual Flood	F'(X), %	F(X), %	$\Delta = abs[F'(X)-F(X)]$
23	17,300	52.356	64.1	11.74
24	17,300	54.645	64.1	9.46
25	17,500	56.818	67.2	10.38
26	17,600	59.880	68.6	8.72
27	17,700	61.35	70.0	8.65
28	17,700	63.694	70.0	6.31
29	17,900	65.789	72.6	6.81
30	18,000	68.493	73.9	5.41
31	18,000	70.423	73.9	3.48
32	18,100	72.460	75.1	2.64
33	18,200	75.190	76.2	1.01

No.	Max Annual Flood	F'(X), %	F(X), %	$\Delta = abs[F'(X)-F(X)]$
34	18,300	77.520	77.3	0.22
35	18,300	79.370	77.3	2.07
36	18,900	81.970	83.1	1.13
37	19,100	84.030	84.7	0.67
38	19,300	86.210	86.2	0.1
39	19,400	88.500	86.9	1.6
40	20,200	90.910	91.3	0.4
41	20,500	93.460	92.6	0.86
42	21,200	95.240	94.9	0.34
43	22,900	98.040	97.9	0.14

 $\begin{array}{l} \Delta_{\max} = abs[F'(X)-F(x)] = 12.5\%\\ \Delta_{43,5\%} = 0.206 = 20.6\% \mbox{ (in the table)}\\ \Delta_{\max} \leq \Delta_{43,5\%} \quad \fbox { The Gumbel distribution is fitted to maximum annual flood} \end{array}$

Chow, V.T., Maidment, D.R., & Mays, L.W. (1988). Applied hydrology. New York: McGraw-Hill Book Company.

LECTURE NOTES EGCE 323 HYDROLOGY

Asst.Prof.Dr.Areeya Rittima

Department of Civil and Environmental Engineering Faculty of Engineering Mahidol University E-mail: areeya.rit@mahidol.ac.th Revised in 2018

LECTURE OUTLINE

Flood Frequency Analysis

- Frequency Analysis
- Extreme Value Distribution
- Frequency Analysis Using Frequency Factors

FREQUENCY ANALYSIS

Frequency Analysis

- Hydrologic systems are sometimes impacted by extreme events such as severe storms, floods, and droughts.
- The magnitude of an extreme events occurring less frequently than more moderate events.
- The objective of frequency analysis of hydrologic data is to relate the magnitude of extreme events to their frequency of occurrence through the use of probability distributions.
- The results of flood flow frequency analysis can be used for many engineering purposes;
 - (1) for the design of dams, bridges, culvert, and flood control structures.
 - (2) to determine the economic value of flood control projects.
 - (3) to delineate flood plains.
 - (4) to determine the effect of encroachments on the flood plain.

Return Period

 Suppose that an extreme event is defined to have occurred if a random variable X is greater than or equal to some level x_{Tr}.

 $X \geq x_{Tr}$

• The **recurrence interval**, τ is the time between occurrences of X $\geq x_{Tr}$

Year	1930	1940	1950	1960	1970
0		55,900	13,300	23,700	9,190
1		58,000	12,300	55,800	9,740
2		56,000	28,400	10,800	58,500
3		7,710	11,600	4,100	33,100
4		12,300	8,560	5,720	25,200
5	38,500	22,000	4,950	15,000	30,200
6	179,000	17,900	1,730	9,790	14,100
7	17,200	46,000	25,300	70,000	54,500
8	25,400	6,970	58,300	44,300	12,700
9	4,940	20,600	10,100	15,200	

If xTr = 50,000 cfs

It can be seen that the maximum discharge exceeded this level 9 times during the period of record, with recurrence intervals ranging from 1-16 years.

Exceedenc e Year	1936	1940	1941	1942	1958	1961	1967	1972	1977	Avg.
Recurrence Interval (yr)	2	1 1	1	16		3 6		5 .	5	5.1

The return period Tr of the event $X \ge xTr$ is the expected value of τ , $E(\tau)$.

Its average value measured over a very large number of the occurrences.

Therefore, the return period of a 50,000 cfs annual maximum discharge on the Guadalupe River is approximately $\tau = 41/8 = 5.1$ years

Thus, "the return period of an event of a given magnitude may be defined as the average recurrence interval between events equalling or exceeding a specified magnitude".

The probability of occurrence of the event $X \ge x_{Tr}$ in any observation is

$$p = P(X \ge x_{Tr})$$

$$E(\tau) = \frac{p}{[1-(1-p)]^2} = \frac{1}{p}$$

Hence, $E(\tau) = Tr = 1/p$

The probability of occurrence of an event in any observation is the inverse of its return period.

$$p = P(X \ge x_{Tr}) = \frac{1}{Tr}$$

For example, the probability that the maximum discharge in the Guadalupe River will equal or exceed 50,000 cfs in any year is approximately

$$p = P(X \ge x_{Tr}) = \frac{1}{5.1} = 0.195$$

What is the probability that a Tr-year return period event will occur at least once in N years?

 $P(X < x_{Tr} \text{ each year for } N \text{ years}) = (1-p)^{N}$

 $P(X \ge x_{Tr} \text{ at least once in } N \text{ years}) = 1-(1-p)^{N} \text{ or }$

 $P(X \ge xTr \text{ at least once in } N \text{ years}) = 1-[1-(1/Tr)]^N$

FREQUENCY ANALYSIS: EXAMPLE 1

Estimate the probability that the annual maximum discharge Q on the Guadalupe River will exceed 50,000 cfs at least once during the next three years.

Solution

From the discussion above, $P(Q \ge 50,000 \text{ cfs in any year}) \approx 0.0195$

So, $P(Q \ge 50,000 \text{ cfs} \text{ at least once during the next 3} \text{ years}) = 1-(1-0.195)^3$

HYDROLOGIC DATA SERIES

Source: Chow et al. (1988)

Complete Duration Series/Original Data Series consists of all the data (N=20 years).

Partial Duration Series

is a series of data which are selected so their magnitude is greater than a predefined base value.

If the base value is selected so that the number of values in the series is equal to the number of years of the record, the series is called an annual exceedence series.

HYDROLOGIC DATA SERIES

- Using largest annual values, it is an **annual maximum serie**.
- Selecting the smallest annual values produces an annual minimum series.

Partial Duration Series

- An extreme value series includes the largest and smallest values occurring in each of the equally-long time intervals of the record.
- The time interval length is usually taken as one year, and a series so selected is called **annual series**.

HYDROLOGIC DATA SERIES

The annual maximum values and the annual exceedence values of the hypothetical data are arranged graphically in figure in order of magnitude.

EXTREME VALUE DISTRIBUTIONS

The study of extreme hydrologic events involves the selection of a sequence of the largest or smallest observations from sets of data. For example,

EXTREME VALUE DISTRIBUTIONS: EXTREME VALUE TYPE1

CDF: Extreme Value Type 1

$$F(x) = \exp[-\exp(-\frac{x-\mu}{\alpha})]$$

Parameters:

$$\alpha = \frac{\sqrt{6}s}{\pi}$$

 $\mu = \overline{x} - 0.5772\alpha$

 $-\infty \ge X \ge \infty$

Reduced Variate, y:

$$y = \frac{x - \mu}{\alpha}$$

CDF:

$$F(x) = exp[-exp(-y)]$$

Solving for y:

F(X)

Define y for Type II, Type II Distributions

EXTREME VALUE DISTRIBUTIONS: EXTREME VALUE TYPE1

EXTREME VALUE DISTRIBUTIONS: EXTREME VALUE TYPE1

Return Period:

$$\frac{1}{Tr} = P(X \ge X_{Tr})$$
$$= 1 - P(X < X_{Tr})$$
$$= 1 - F(X_{Tr})$$

$$F(X_{Tr}) = \frac{Tr - 1}{Tr}$$

EV(I) Distribution, y_{Tr}:

$$y_{Tr} = -\ln[\ln(\frac{Tr}{Tr-1})]$$

EV(I) Distribution, x_{Tr}:

 $x_{Tr} = \mu + \alpha y_{Tr}$

EXTREME VALUE DISTRIBUTIONS: EXAMPLE 2

Annual maximum values of 10-minute duration rainfall at Chicago, illinois from 1913 to 1947 are presented in the table. Develop a model for storm rainfall frequency analysis using the Extreme Value Type I distribution and calculate the 5, 10, and 50 year return period maximum values of 10 minute rainfall at Chicago.

Year	1910	1920	1930	1940
0		0.53	0.33	0.34
1		0.76	0.96	0.70
2		0.57	0.94	0.57
3	0.49	0.80	0.80	0.92
4	0.66	0.66	0.62	0.66
5	0.36	0.68	0.71	0.65
6	0.58	0.68	1.11	0.63
7	0.41	0.61	0.64	0.60
8	0.47	0.88	0.52	Mean = 0.649 in
9	0.74	0.49	0.64	D= 0.177 in

EXTREME VALUE DISTRIBUTIONS: EXAMPLE 2

Solution

$$\alpha = \frac{\sqrt{6s}}{\pi} = \frac{\sqrt{6x0.177}}{\pi} = 0.138$$

$$\mu = \overline{x} - 0.5772\alpha = 0.649 - 0.5772x0.138 = 0.569$$

Probability Model:

$$F(x) = \exp[-\exp(-\frac{x - 0.569}{0.138})]$$

To determine the values of x_{Tr} for Tr = 5 years:

$$y_{Tr} = -\ln[\ln(\frac{Tr}{Tr-1})] = -\ln[\ln(\frac{5}{5-1})] = 1.50$$

$$x_{Tr} = \mu + \alpha y_{Tr} = 0.569 + 0.138 \times 1.50 = 0.78$$
 in

FREQUENCY ANALYSIS USING FREQUENCY FACTOR

The magnitude x_{tr} of a hydrologic event can be represented as the mean plus the departure Δx_{tr} of the variate from the mean.

The theoretical K-Tr relationships for several probability distributions commonly used in hydrologic frequency analysis are now described.

FREQUENCY ANALYSIS USING FREQUENCY FACTOR: NORMAL DISTRIBUTION

Frequency Factor:

$$K_{Tr} = \frac{X_{Tr} - \mu}{\sigma} = Z$$

Value z:

w =
$$[ln(\frac{1}{p^2})]^{1/2}$$
 (0 < p ≤ 0.5)

$$z = w - \frac{2.515517 + 0.802853w + 0.010328w^2}{1 + 1.432788w + 0.189269w^2 + 0.001308w^3}$$

When p > 0.5, 1-p is substituted for p in equation * and the value of z computed by equation ** is given a negative sign.

FREQUENCY ANALYSIS USING FREQUENCY FACTOR: NORMAL DISTRIBUTION/EXAMPLE

Calculate the frequency factor for the normal distribution for an event with a return period of 50 years.

Solution For Tr = 50 years, p = 1/50 = 0.02

w =
$$[\ln(\frac{1}{p^2})]^{1/2} = [\ln(\frac{1}{0.02^2})]^{1/2} = 2.7971$$

 $K_{Tr} = z = w - \frac{2.515517 + 0.802853w + 0.010328w^2}{1 + 1.432788w + 0.189269w^2 + 0.001308w^3}$ = 2.054

FREQUENCY ANALYSIS USING FREQUENCY FACTOR: EXTREME VALUE (1) DISTRIBUTION

Frequency Factor:

$$K_{Tr} = -\frac{\sqrt{6}}{\pi} \{0.5772 + \ln[\ln(\frac{Tr}{Tr-1})]\}$$

Return Period:

$$Tr = \frac{1}{1 - \exp\{-\exp[-(\gamma + \frac{\pi K_{Tr}}{\sqrt{6}})]\}}$$

$$\gamma = 0.5772$$

 $x_{Tr} = \mu$

FREQUENCY ANALYSIS USING FREQUENCY FACTOR: EXTREME VALUE (1)/EXAMPLE 4

Determine the 5 year return period rainfall for Chicago using the frequency factor of Extreme Value (I) Distribution and the annual maximum rainfall data given in the table.

Solution

For Tr = 5 years

$$K_{Tr} = -\frac{\sqrt{6}}{\pi} \{0.5772 + \ln[\ln(\frac{Tr}{Tr-1})]\} = -\frac{\sqrt{6}}{\pi} \{0.5772 + \ln[\ln(\frac{5}{5-1})]\}$$
$$= 0.719$$

$$x_{Tr} = \overline{x} + K_{Tr}S_x = 0.0649 + 0.719X0.177$$

= 0.78in

FREQUENCY ANALYSIS USING FREQUENCY FACTOR: LOG-PEARSON (III) DISTRIBUTION

Frequency Factor:

$$K_{Tr} = z + (z^2 - 1)k + \frac{1}{3}(z^3 - 6z)k^2 - (z^2 - 1)k^3 + zk^4 + \frac{1}{3}k^5$$

where

$$k = \frac{C_s}{6}$$

FREQUENCY ANALYSIS USING FREQUENCY FACTOR

Positive Skew

	Return period in years										
Skew	2	5	10 Exceed	25 ence prob	50 ability	100	200				
C_s or C_w	0.50	0.20	0.10	0.04	0.02	0.01	0.005				
3.0	-0.396	0.420	1.180	2.278	3.152	4.051	4.970				
2.9	-0.390	0.440	1.195	2.277	3.134	4.013	4.909				
2.8	-0.384	0.460	1.210	2.275	3.114	3.973	4.847				
2.7	-0.376	0.479	1.224	2.272	3.093	3.932	4.783				
2.6	-0.368	0.499	1.238	2.267	3.071	3.889	4.718				
2.5	-0.360	0.518	1.250	2.262	3.048	3.845	4.652				
2.4	-0.351	0.537	1.262	2.256	3.023	3.800	4.584				
2.3	-0.341	0.555	1.274	2.248	2.997	3.753	4.515				
2.2	-0.330	0.574	1.284	2.240	2.970	3.705	4.444				
2.1	-0.319	0.592	1.294	2.230	2.942	3.656	4.372				
2.0	-0.307	0.609	1.302	2.219	2.912	3.605	4.298				
1.9	-0.294	0.627	1.310	2.207	2.881	3.553	4.223				
1.8	-0.282	0.643	1.318	2.193	2.848	3,499	4.147				
1.7	-0.268	0.660	1.324	2.179	2.815	3.444	4.069				
1.6	-0.254	0.675	1.329	2.163	2.780	3.388	3,990				
1.5	-0.240	0.690	1.333	2.146	2.743	3.330	3.910				
1.4	-0.225	0.705	1.337	2.128	2.706	3.271	3.828				
1.3	-0.210	0.719	1.339	2.108	2.666	3.211	3.745				
1.2	-0.195	0.732	1.340	2.087	2.626	3.149	3.661				
1.1	-0.180	0.745	1.341	2.066	2.585	3.087	3.575				
1.0	-0.164	0.758	1.340	2.043	2.542	3.022	3.489				
0.9	-0.148	0.769	1.339	2.018	2.498	2.957	3.401				
0.8	-0.132	0.780	1.336	1.993	2.453	2.891	3.312				
0.7	-0.116	0.790	1.333	1.967	2,407	2.824	3.223				
0.6	-0.099	0.800	1.328	1.939	2.359	2.755	3.132				
0.5	-0.083	0.808	1.323	1.910	2.311	2.686	3.041				
0.4	-0.066	0.816	1.317	1.880	2.261	2.615	2.949				
0.3	-0.050	0.824	1.309	1.849	2.211	2.544	2.856				
0.2	-0.033	0.830	1.301	1.818	2.159	2,472	2.763				
0.1	-0.017	0.836	1.292	1.785	2.107	2.400	2.670				
0.0	0	0.842	1.282	1.751	2.054	2.326	2.576				

Negative Skew

		Return period in years													
hew	2	5	10 Exceed	25 ence prob	50 ability	100	200								
or C_w	0.50	0.20	0.10	0.04	0.02	0.01	0.005								
4.1	0.017	0.846	1.270	1.716	2.000	2.252	2.482								
	0.033	0.850	1.258	1.680	1.945	2.178	2.388								
8. X	0.050	0.853	1.245	1.643	1.890	2.104	2.294								
840 CO.	0.066	0.855	1.231	1.606	1.834	2.029	2.201								
88033 C	0.083	0.856	1.216	1.567	1.777	1.955	2.108								
	0.099	0.857	1.200	1.528	1.720	1.880	2.016								
	0.116	0.857	1.183	1.488	1.663	1.806	1.926								
88.00	0.132	0.856	1.166	1.448	1.606	1.733	1.837								
10.000	0.148	0.854	1.147	1.407	1.549	1.660	1.749								
	0.164	0.852	1.128	1.366	1.492	1.588	1.664								
	0.180	0.848	1.107	1.324	1.435	1.518	1.581								
	0.195	0.844	1.086	1.282	1.379	1.449	1.501								
BRUE .	0.210	0.838	1.064	1.240	1.324	1.383	1.424								
1.4	0.225	0.832	1.041	1.198	1.270	1.318	1.351								
10.00	0.240	0.825	1.018	1.157	1.217	1.256	1.282								
	0.254	0.817	0.994	1.116	1.166	1.197	1.216								
	0.268	0.808	0.970	1.075	1.116	1.140	1.155								
Real Content	0.282	0.799	0.945	1.035	1.069	1.087	1.097								
1.0	0.294	0.788	0.920	0.996	1.023	1.037	1.044								
	0.307	0.777	0.895	0.959	0.980	0.990	0.995								
	0.319	0.765	0.869	0.923	0.939	0.946	0.949								
	0.330	0.752	0.844	0.888	0.900	0.905	0.907								
13 12 18	0.341	0.739	0.819	0.855	0.864	0.867	0.869								
1000	0.351	0.725	0.795	0.823	0.830	0.832	0.833								
1.5 11 261	0.360	0.711	0.771	0.793	0.798	0.799	0.800								
	0.368	0.696	0.747	0.764	0.768	0.769	0.769								
17 1000	0.376	0.681	0.724	0.738	0.740	0.740	0.741								
1.8	0.384	0.666	0.702	0.712	0.714	0.714	0.714								
1.9	0.390	0.651	0.681	0.683	0.689	0.690	0.690								
	0.396	0.636	0.666	0.666	0.666	0.667	0.667								

FREQUENCY ANALYSIS USING FREQUENCY FACTOR: EXAMPLE 5

Calculate the 5 and 50 year return period annual maximum discharge of the Guadalupe River near Victoria, Texas, using the Log-Normal and Log-Pearson Type III Distributions. The data from 1935 to 1978 are given in the table.

Solution

The logarithms of the discharge values are taken and their statistics are calculated:

 $\bar{y} = 4.2743$

 $s_v = 0.4027$

 $C_{s} = -0.0696$

FREQUENCY ANALYSIS USING FREQUENCY FACTOR: EXAMPLE 5

Log-Normal Distribution:

$$y_{Tr} = \overline{y} + K_{Tr}S_y$$
 $K_{50} = 2.054$
 $y_{50} = 4.2743 + 2.054 \times 0.4027 = 5.101$
 $x_{50} = (10)^{5.101} = 126,300 \text{ cfs}$

Log-Pearson Type III Distribution:

$$k_{50} = 2.054 + \frac{(2.00 - 2.054)}{(-0.1 - 0)} = 2.016$$

$$y_{Tr} = \overline{y} + K_{Tr}S_y$$

 $y_{50} = 4.2743 + 2.016 \times 0.4027 = 5.0863$ $x_{50} = (10)^{5.0863} = 121,990 \text{ cfs}$

FREQUENCY ANALYSIS USING FREQUENCY FACTOR: EXAMPLE 5

PDF	Return Period				
	5 years	50 years			
Log-Normal (Cs=0)	41,060	126,300			
Log-Pearson Type III (Cs=-0.07)	41,700	121,900			

PROBABILITY PLOTTING

PROBABILITY PLOTTING

Simple Formula:

 $P(X \ge x_m) = \frac{m}{n}$

California's Formula:

$$P(X \ge x_m) = \frac{m-1}{n}$$

Hazen's Formula (1930):

$$P(X \ge x_m) = \frac{m - 0.5}{n}$$

Chegodayev's Formula:

$$P(X \ge x_m) = \frac{m - 0.3}{n + 0.4}$$

Weibull's Formula:

$$P(X \ge x_m) = \frac{m}{n+1}$$

- When m = the rank of a value in a list ordered by descending magnitude
 - n = the total number of values to be plotted
 - x_m = the exceedence probability of the mth largest value

PROBABILITY PLOTTING

Form of most plotting position formulas:

$$P(X \ge x_m) = \frac{m-b}{n+1-2b}$$

When m = the rank of a value in a list ordered by descending magnitude n = the total number of values to be plotted x_m= the exceedence probability of the mth largest value b = a parameter

Chow, V.T., Maidment, D.R., & Mays, L.W. (1988). Applied hydrology. New York: McGraw-Hill Book Company.

The following figure shows the whole process of the hydrologic cycle. Please fill up the hydrological terms to describe the hydrologic cycle.

<u>Fig.1</u> Hydrologic Cycle Source : Xlskoor (2016)

Assignment_Water Budget EGCE 323 Hydrology Department of Civil and Environmental Engineering Faculty of Engineering, Mahidol University

In a given year, a 15,000 mi² watershed receives 20 inches of precipitation. The average rate of flow in the river draining area was found to be 6,600 cfs. Estimate ET. Assume that the groundwater divide coincides with the watershed boundary, so G = 0. In one year, it can be assumed that the soil/groundwater conditions are unchanged, so $\Delta S = 0$ (1 mi = 5,280 ft).

Assignment_Residence Time EGCE 323 Hydrology Department of Civil and Environmental Engineering Faculty of Engineering, Mahidol University

1. Assuming that all surface runoff to the oceans comes from rivers, calculate the average residence time of water in rivers.

2. Assuming that all groundwater runoff to the oceans comes from fresh groundwater, calculate the average residence time of this water.

Assignment_Precipitable Water EGCE 323 Hydrology Department of Civil and Environmental Engineering Faculty of Engineering, Mahidol University

Calculate the precipitable water in a saturated air column 35 km high above 1 m² of ground surface. The surface pressure is 101 kPa, the surface air temperature is 33°C, the lapse rate is 6.0°C/km, and the increment in elevation is 5 km.

Assignment_Areal Rainfall EGCE 323 Hydrology Department of Civil and Environmental Engineering Faculty of Engineering, Mahidol University

Four rain gage stations located within a rectangular river basin with four corners at (0,0), (0,13), (14,13), and (14,0) have the following coordinates and recorded rainfalls in the table below.

Rain Gage Station	Rain Gage Location
1	(2,9)
2	(7,11)
3	(12,10)
4	(6,2)

Year		Station	Name		Year				
	1	2	3	4		1	2	3	4
1	1,486	2,472	1,113	928	16	819	1,922	827	805
2	1,476	2,469	1,483	1,483	17	865	2,379	835	741
3	1,404	2,001	953	1,345	18	1,169	2,610	710	842
4	794	1,918	521	786	19	939	2,177	776	980
5	963	2,131	813	785	20	984	1,929	875	859
6	964	1,820	1,674	1,076	21	970	3,088	944	1,003
7	1,057	1,852	925	1,268	22	1,276	2,443	961	1,233
8	1,217	2,783	794	1,145	23	1,810	2,689	647	872
9	1,737	3,034	775	885	24	1,111	2,938	1,170	601
10	1,097	1,493	1,355	1,390	25	1,350	1,571	1,175	1,198
11	1,166	2,020	576	705	26	1,580	2,569	1,312	1,585
12	1,458	2,505	1,127	611	27	1,214	2,127	323	938
13	1,133	2,043	819	611	28	1,229	2,317	1,195	1,420
14	1,273	2,115	828	349	29	927	2,199	566	1,088
15	1,484	2,237	1,036	378	30	1,465	2,118	773	1,105

Unit:mm/yr

All coordinates are expressed in miles, Compute the average rainfall in the area by

- (1) Arithmetic-mean method
- (2) Thiessen method
- (3) Isohyetal method

Assignment_ET Calculation EGCE 323 Hydrology Department of Civil and Environmental Engineering Faculty of Engineering, Mahidol University

Calculate the reference evapotranspiration (ETo) using the meteorological data of station 48425 Suphanburi below.

CLIMATOLOGICAL DATA FOR THE PERIOD 1971-2000

Station: Suphanburi								Elevation	n of statio	n above	MSL	7	Meters
Index station	48425							Height o	f barome	eter abov	e MSL	9	Meters
Latitude	14 28 N							Height o	f thermor	neter ab	ove grou	1.20	Meters
Longitude	100 08 E							Height o	f wind va	ine abov	e ground	11.65	Meters
-								Height o	f rain gau	Jge	-	0.80	Meters
								Ũ	Ũ	0			
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL
Pressure (Hectopascal)													
Mean	1,012.90	1,011.40	1,010.00	1,008.40	1,007.20	1,006.40	1,006.50	1,006.70	1,008.20	1,010.20	1,012.40	1,013.90	1,009.50
Ext. max.	1,025.30	1,022.60	1,022.90	1,018.30	1,014.40	1,012.80	1,013.90	1,013.30	1,018.20	1,019.80	1,021.90	1,024.10	1,025.30
Ext. min.	1,004.60	1,001.90	1,001.00	999.60	999.70	999.00	998.60	998.80	1,000.10	1,001.90	1,003.10	1,004.20	998.60
Mean daily range	5.00	5.30	5.50	5.40	4.90	4.10	4.00	4.10	4.70	4.70	4.60	4.80	4.80
Temperature (Celsius)													
Mean	25.40	27.20	28.90	30.30	29.80	29.10	28.60	28.40	28.10	27.80	26.40	24.60	27.90
Mean max.	32.00	33.90	35.60	36.70	35.70	34.40	34.00	33.60	32.90	31.90	31.00	30.50	33.50
Mean min.	19.90	21.90	23.80	25.30	25.50	25.20	24.80	24.70	24.60	24.40	22.40	19.60	23.50
Ext.max.	36.20	39.10	40.10	41.50	41.70	39.30	40.00	37.70	36.70	36.90	35.90	35.50	41.70
Ext.min	11.30	14.10	14.90	20.70	20.90	20.20	21.10	20.80	20.80	18.00	14.50	10.00	10.00
Relative Humidity (%)													
Mean	70.00	71.00	71.00	70.00	73.00	73.00	75.00	76.00	80.00	80.00	75.00	70.00	74.00
Mean max.	89.00	92.00	92.00	90.00	89.00	88.00	89.00	90.00	93.00	93.00	90.00	87.00	90.00
Mean min.	44.00	44.00	44.00	45.00	51.00	56.00	56.00	57.00	62.00	63.00	56.00	48.00	52.00
Ext. min.	17.00	9.00	15.00	14.00	24.00	25.00	34.00	33.00	38.00	40.00	29.00	22.00	9.00
Dew Point (Celsius)													
Mean	18.90	20.80	22.20	23.40	23.90	23.70	23.50	23.50	24.20	23.70	21.00	18.30	22.30
Evaporation													
Mean-pan	129.50	138.40	181.10	195.90	188.70	169.00	163.60	155.40	135.50	133.00	130.00	133.40	1,853.50
Cloudiness (0-10)													
Mean	3.90	4.00	4.20	5.30	7.00	8.10	8.30	8.70	8.20	7.00	5.00	3.70	6.10
Sunshine Duration (hr.)													
VISIDIIITY (KM.)	0.70	2.00	4.00	(00	0.00	10.40	10.00	10.70	0.00	0.00	7.00	(50	7.00
0700 L.S.I.	3.70	3.20	4.90	0.80	9.20	10.60	10.90	10.70	9.90	8.80	7.80	6.50	7.80
	6.50	6.20	6./0	7.90	10.20	11.30	11.60	11.50	11.00	10.60	9.60	8.10	9.30
wind (knots)	0.10	0.00	2 50	2 /0	2.00	2 /0	2 50	2.50	0.00	0.20	2.10	0.00	
Mean wind speed	2.10	2.80	3.50	3.60	3.20	3.60	3.50	3.50	2.20	2.30	3.10	2.90	-
Prevaling wind	N 00.00	د ۵۵.۵۵	49.00	40.00	40.00	35.00	35.00	07.00	30.00	N 20.00	N 00.00	22.00	-
Max. wind speed	20.00	20.00	48.00	42.00	42.00	35.00	35.00	27.00	32.00	30.00	28.00	33.00	48.00
	4 50	7 20	10.20	50.10	100.70	100.00	10/00	107.00	052.00	200 20	40.00	0.20	1 050 00
Mean rainy day	0.00	7.30	10.30	37.10	120.00	100.20	106.00	127.20	200.70	207.30	42.20	9.30	1,037.70
	(2.00	0.70	1.00	4.70	127.00	12.00	14.10	15.90	17.30	107.00	4.10	72.40	100.10
Number of days with	63.90	49.40	95.60	146.00	137.80	66.30	89.40	66.10	120.90	187.80	84.70	/3.40	187.80
	20 /0	24.20	00 70	22.20	/ 00	1 40	1 00	0.70	0.70	2 70	10.40	22.40	15/ 20
	20.60	26.20	20./0	22.70	0.80	1.40	1.80	0.70	0.70	3.70	12.40	22.60	136.30
FOG	0.50	7.60	2.90	0.20	0.00	0.10	0.00	0.00	0.10	0.00	0.40	1.20	23.00
Thundorstorm	0.00	0.00	1.40	0.00	10.00	0.00	0.00	U.UU	10.00	0.00	1.00	0.00	0.00
	0.20	0.50	1.40	5.80	10.90	6.10	5.80	5.40	12./0	9.10	1.70	0.30	60.10
squuii	0.00	0.00	0.00	0.00	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10

If the crop of interest is sweet corn, compute the potential evapotranspiration on a weekly basis.

Assignment_Flow Duration Curve EGCE 323 Hydrology Department of Civil and Environmental Engineering Faculty of Engineering, Mahidol University

The observed monthly streamflow of Khaew Noi river is given in the table. Plot the flow-duration curve and estimate the flow that can be expected 80% of the time.

Veer	Monthly Streamflow (cms)												
rear	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
1980	192	229	254	103	166	231	135	83	105	194	156	87	
1981	190	228	267	191	237	251	203	245	376	413	202	114	
1982	140	192	271	211	242	194	117	347	285	486	342	142	
1983	69	74	108	159	184	163	147	224	313	346	218	84	
1984	36	33	34	201	140	90	60	62	67	84	43	77	
1985	149	124	150	27	32	71	441	342	659	385	187	202	
1986	101	119	122	199	271	346	208	337	322	302	139	124	
1987	85	169	220	121	133	208	140	206	218	179	206	82	
1988	105	87	133	205	218	255	164	230	279	457	117	72	
1989	114	183	238	118	189	251	108	135	199	170	101	118	
1990	111	85	167	232	247	166	159	240	270	284	212	84	
1991	135	165	237	169	122	116	180	487	463	408	324	215	
1992	54	117	146	212	192	243	253	268	203	356	227	116	
1993	103	167	211	182	150	104	99	249	213	200	130	88	
1994	188	183	219	192	173	125	220	655	695	381	415	322	
1995	126	157	213	213	223	280	181	177	525	408	205	125	
1996	162	222	259	236	222	309	435	476	758	894	479	229	
1997	208	232	297	207	217	206	236	1077	630	481	339	229	
1998	95	99	116	282	301	233	178	201	184	283	137	77	
1999	136	193	239	123	137	104	122	310	237	375	316	141	
2000	123	166	232	241	278	276	228	236	357	257	200	167	
2001	165	205	268	264	214	176	202	342	372	245	155	161	
2002	222	238	224	277	298	235	263	528	845	484	276	195	
2003	151	204	239	247	265	223	237	261	215	288	162	137	

Assignment EGCE 323 Hydrology Department of Civil and Environmental Engineering Faculty of Engineering, Mahidol University

A hydrological drainage basin comprising 7 subcatchments is shown in figure. Determine the required capacity of the storm sewer EB draining subarea III for a five-year return period storm. This subcatchment has an area o f4 acres, a runoff coefficient of 0.6 and an inlet time of 10 minutes.

The design precipitation intensity for this location is given by

 $i = 120T^{0.175}/(Td+27)$

Where i = The intensity in inch per hour T = Return period Td = Duration in minutes

The ground elevations at point E and B are 498.43 and 495.55 ft above sea level, respectively, and the length of pipe is 450 ft. Assume Manning's n is 0.015. Calculate the flow time in pipe.

The drainage basin and storm sewer system

Assignment_Unit Hydrograph EGCE 323 Hydrology Department of Civil and Environmental Engineering Faculty of Engineering, Mahidol University

1. The excess rainfall and direct runoff recorded for a storm are as follows:

Time (hr)	1	2	3	4	5	6	7	8	9
Excess rainfall (in)	1.0	2.0		1.0					
Direct runoff (cfs)	10	120	400	560	500	450	250	100	50

Calculate the one-hour unit hydrograph.

2. The 10-minute unit hydrograph for a 0.86 mi2 watershed has 10 minute ordinates in cfs/in of 134, 392, 475, 397, 329, 273, 227, 188, 156, 129, 107, 89, 74, 61, 51, 42, 35, 29, 24, 10, 17, 14, 11,.... Determine the peaking coefficient Cp for Snyder's method. The main channel length is 10,500 ft, and Lc = 6000 ft. Determine the coefficient Ct.

Assignment_Open Channel Flow EGCE 323 Hydrology Department of Civil and Environmental Engineering Faculty of Engineering, Mahidol University

A trapezoidal open channel has bottom width of 4 ft with a slope of 0.001 ft/ft. The side slope of the channel sides (z) is 2 and the channel is constructed out of concrete (n=0.013). Determine the flow rate for steady uniform flow if the normal depth is 2 ft.

เอกสารประกอบการสอนวิชา วศยธ 323 อุทกวิทยา (HYDROLOGY)